Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (2): 241-249    DOI: 10.11900/0412.1961.2020.00495
Research paper Current Issue | Archive | Adv Search |
First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy
LI Yamin(), ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun
State Key Laboratory of Advanced Processing and Reuse of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
Cite this article: 

LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy. Acta Metall Sin, 2022, 58(2): 241-249.

Download:  HTML  PDF(1834KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Inconel 718 alloy is an Fe-Ni based superalloy precipitation-strengthened by γ″ phase (Ni3Nb) and γ′ phase (Ni3(AlTi)). It has been widely used in aviation, energy, chemicals, and other fields because of its outstanding mechanical properties, resistance to high-temperature oxidation, and corrosion resistance. Because the mechanical properties of Inconel 718 alloy are primarily determined by the γ″ precipitates, Nb becomes one of the most important alloying elements. Due to the high content, large atomic radius, and small partition coefficient of Nb, Nb segregation occurs easily during the solidification process of casting, welding, and laser cladding. The segregation drastically degrades mechanical properties and increases the difficulty of subsequent heat treatment. The composition of Inconel 718 alloy comprises many elements, and some trace elements are inevitably introduced from the raw materials. The interaction of the elements has a certain effect on Nb segregation. In this study, the effect of the interaction of elements caused by doping of Cu on Nb segregation in Inconel 718 alloy was studied by first-principles calculation and experiment. The Ni-Fe-Cr-Nb supercell model was constructed with and without Cu doping. The enthalpy of formation, cohesive energy, state density, electron density difference, and population analysis was calculated. The calculation results show that the doping of Cu reduces the stability of the system. Doping will change the interaction between elements and affects the strength and density distribution ratio of the charged density between atomic bonds in the system. The addition of Cu increases the bond strength between the Fe atoms and Cr atoms and the repulsive force between Fe atoms and Nb atoms in the matrix. The experimental results show that the addition of 0.1%Cu (mass fraction) decreases the segregation of Fe and Cr, but promotes the segregation of Nb. Experimental results and first-principles calculations show that the increase in the repulsive force between the Nb atom and Fe atom, which is caused by the interaction between the alloying elements after doping with Cu, is the essential reason for Cu to promote Nb segregation.

Key words:  Inconel 718 alloy      alloying element interaction      Nb segregation mechanism      first principle     
Received:  08 December 2020     
ZTFLH:  TG146.1  
Fund: Provincial and Ministry Co-Construction of the Open Fund Project of the State Key Laboratory of Advanced Processing and Reuse of Nonferrous Metals(SKLAB02019014)
About author:  LI Yamin, associate professor, Tel: 13993195230, E-mail: leeyamin@163.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00495     OR     https://www.ams.org.cn/EN/Y2022/V58/I2/241

AlloyCAlTiNbMoCrNiCuFe
No.0≤ 0.050.551.055.403.0518.452.000.00Bal.
No.1≤ 0.050.551.055.403.0518.452.000.10Bal.
Table 1  Nominal chemical composition of experimental alloy
Fig.1  Supercell model for calculation
Formulaa / nmb / nmc / nmα / (°)β / (°)γ / (°)V / nm3
Ni20Fe6Cr60.69880.70860.704190.003489.998290.00580.3487
Ni19Fe6Cr6Nb0.70630.71140.708190.001889.999090.00580.3558
Ni18Fe6Cr6NbCu0.70770.71240.706789.008190.001090.00100.3563
Table 2  Equilibrium lattice constants of each supercell
FormulaFormation enthalpy / (eV·atom-1)Cohesive energy / (eV·atom-1)Total energy / eV
Ni19Fe6Cr6Nb-81.6314-10.3420-47349.2553
Ni18Fe6Cr6NbCu-81.6141-10.2053-47470.1808
Table 3  Calculated formation heats and binding energies of the system
Fig.2  Diagrams of density of states (DOS) of the system before and after doping (PDOS—partial density of states, EF—Fermi level)
Fig.3  Differential charge density diagrams of the system (010) before and after doping
SystemAtomspdTotalCharge
Ni19Fe6Cr6NbNi0.580.828.6510.05-0.04
Fe0.500.646.737.870.13
Cr2.666.534.9714.16-0.18
Nb2.675.313.9311.911.09
Ni18Fe6Cr6NbCuNi0.580.818.6510.04-0.04
Fe0.490.626.737.850.17
Cr2.656.534.9814.16-0.15
Cu0.790.989.6211.39-0.39
Nb2.695.333.9311.951.05
Table 4  Atomic populations of systems before and after doping
AtomNi19Fe6Cr6NbNi18Fe6Cr6NbCu
PopulationLength / nmPopulationLength / nm
Fe-Ni0.190.2510860.200.251930
Cr-Fe-0.020.2475380.030.248490
Cr-Ni0.040.2507890.050.250421
Ni-Ni0.190.2500510.190.250101
Fe-Nb-0.170.258629-0.180.257657
Ni-Nb-0.130.253356-0.130.253710
Ni-Cu--0.130.250674
Cr-Cu---0.160.249645
Fe-Cu--0.110.244092
Table 5  Overlapping populations of systems before and after doping
Fig.4  XRD spectra of as-cast Inconel 718 alloy before and after Cu doping
Fig.5  OM images of microstructures of as-cast Inconel 718 alloy before and after Cu doping
Fig.6  SEM images of microstructures of as-cast Inconel 718 alloy before and after Cu doping
AlloyAreaNiNbAlTiCrFeMoCu
No.0Matrix51.743.760.390.7220.6819.932.78-
Segregation zone51.907.590.261.3118.5617.353.03-
Laves phase46.4615.53-1.2316.9415.664.18-
No.1Matrix48.791.940.420.2921.2524.223.020.08
Segregation zone45.524.690.460.2920.9222.093.840.18
Laves phase37.1523.040.150.3114.2914.7810.00.29
Table 6  EDS results of different regions of as-cast Inconel 718 alloy
1 Pereira J M , Lerch B A . Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications [J]. Int. J. Impact Eng., 2001, 25: 715
2 Qi H . Review of INCONEL 718 alloy: Its history, properties, processing and developing substitutes [J]. J. Mater. Eng., 2012, (8): 92
齐 欢 . INCONEL 718(GH4169)高温合金的发展与工艺 [J]. 材料工程, 2012, (8): 92
3 Tian Y , Zhao M C . Segregation of Nb and its formation mechanism of high strength casing steel [J]. J. Iron Steel Res., 2020, 32: 344
田 研, 赵明纯 . 高强度油井管钢中的Nb偏析及形成机制分析 [J]. 钢铁研究学报, 2020, 32: 344
4 Sun K , Lin H B , He Y B , et al . Microscopic inspection and improvement of GH4169G alloy forging banded structure defects [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 694
孙 凯, 蔺虹宾, 何跃斌 等 . GH4169G合金锻件条带缺陷微观检测及改进 [J]. 特种铸造及有色合金, 2020, 40: 694
5 Chen Y , Guo Y B , Xu M J , et al . Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and gaussian distribution laser [J]. Mater. Sci. Eng., 2019, A754: 339
6 Zhang Y , Li X X , Wei K , et al . Element segregation in GH4169 Superalloy large-scale ingot and billet manufactured by triple-melting [J]. Acta Metall. Sin., 2020, 56: 1123
张 勇, 李鑫旭, 韦 康 等 . 三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为 [J]. 金属学报, 2020, 56: 1123
7 DuPont J N , Rohino C V . The influence of Nb and C on the solidification microstructures of Fe-Ni-Cr alloys [J]. Scr. Mater., 1999, 41: 449
8 Li A L , Tang X , Gai Q D , et al . Effect of heat treatment on microstructure of K4169 superalloy [J]. J. Aeronaut. Mater., 2006, 26: 311
李爱兰, 汤 鑫, 盖其东 等 . 热处理工艺对K4169合金微观组织的影响 [J]. 航空材料学报, 2006, 26: 311
9 Long Y T , Nie P L , Li Z G , et al . Segregation of niobium in laser cladding Inconel 718 superalloy [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 431
10 Zhang M C , Zheng L , Yao Z H , et al . Effect of Nb content on micro-segregation evolution of GH4169 ingots [J]. Hot Work. Technol., 2013, 42(10): 45
张麦仓, 郑 磊, 姚志浩 等 . Nb含量对GH4169合金钢锭偏析规律的影响 [J]. 热加工工艺, 2013, 42(10): 45
11 Mo Y , Wang D Z , Jiang B , et al . Effect of micro alloying vanadium on micro-segregation behavior of niobium in 718 alloy [J]. Heat Treat. Met., 2017, 42(4): 37
莫 燕, 王东哲, 蒋 斌 等 . 钒微合金化对718合金中铌元素偏析行为的影响 [J]. 金属热处理, 2017, 42(4): 37
12 Sun W R , Guo S R , Lu D Z , et al . Effect of Si on solidification and segregation in Inconel 718 alloy [J]. J. Aeronaut. Mater., 1996, 16(2): 7
孙文儒, 郭守仁, 卢德忠 等 . Si对In718合金凝固过程及元素偏析的影响 [J]. 航空材料学报, 1996, 16(2): 7
13 Meng F X , Li J H , Zhao X . First-principles study on the effects of Zn-segregation in CuΣ5 grain boundary [J]. Acta Phys. Sin., 2014, 63: 237102
孟凡顺, 李久会, 赵 星 . 第一性原理研究Zn偏析对CuΣ5晶界的影响 [J]. 物理学报, 2014, 63: 237102
14 Wang J L , Enomoto M , Shang C J . First-principles study on the interfacial segregation at coherent Cu precipitate/Fe matrix interface [J]. Scr. Mater., 2020, 185: 42
15 Peng L J . Study on microstructure evolution of Cu-Cr-Zr system alloys and interaction mechanism between alloying elements [D]. Beijing: General Research Institute for Nonferrous Metals, 2014
彭丽军 . Cu-Cr-Zr系合金微观组织演变规律及合金元素交互作用机理的研究 [D]. 北京: 北京有色金属研究总院, 2014
16 Huang Z W , Zhao Y H , Hou H , et al . Point defects structure and alloying effects of V atoms into Ni3Al alloy: A first-principles study [J]. Rare Met. Mater. Eng., 2011, 40: 2136
黄志伟, 赵宇宏, 侯 华 等 . V掺杂Ni3Al点缺陷结构及合金化效应的第一性原理研究 [J]. 稀有金属材料与工程, 2011, 40: 2136
17 Perdew J P , Wang Y . Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev., 1992, 45B: 13244
18 Li Y M , Jiang L , Zhao W , et al . First-principle study of the effects of Cu doped on γ' phase [J]. Mater. Rev., 2019, 33: 3085
李亚敏, 江 璐, 赵 旺 等 . 铜掺杂对γ′相影响的第一性原理研究 [J]. 材料导报, 2019, 33: 3085
19 Zhao Y H , Huang Z W , Li A H , et al . First principles study on substitution behavior and alloying effects of Nb in Ni3Al [J]. Acta Phys. Sin., 2011, 60: 047103
赵宇宏, 黄志伟, 李爱红 等 . Nb在Ni3Al中取代行为及合金化效应的第一性原理研究 [J]. 物理学报, 2011, 60: 047103
20 Zhang X Y , Zheng B J , Guo B , et al . Theoretical study on bonding characteristics of Cr, Mn, Mo and N in high nitrogen austenitic stainless steel [J]. Mater. Rev., 2017, 31(18): 146
张旭昀, 郑冰洁, 郭 斌 等 . 高氮奥氏体不锈钢中N与Cr、Mn、Mo键合性质研究 [J]. 材料导报, 2017, 31(18): 146
21 Chen Z M , Yu W Q . Principle of Solidification of Casting Metal [M]. Beijing: Peking University Press, 2014: 116
陈宗民, 于文强 . 铸造金属凝固原理 [M]. 北京: 北京大学出版社, 2014: 116
22 Hu Z Q , Sun W R , Guo S R , et al . Effect of trace P on Fe-Ni based wrought superalloy [J]. Chin. J. Nonferrous Met., 2001, 11: 947
胡壮麒, 孙文儒, 郭守仁 等 . 微量元素磷在铁镍基变形高温合金中的作用 [J]. 中国有色金属学报, 2001, 11: 947
23 Xu Z L . Performance, Strength Design and Engineering Application of High Temperature Metal Materials [M]. Beijing: Chemical Industry Press, 2006: 77
徐自立 . 高温金属材料的性能、强度设计及工程应用 [M]. 北京: 化学工业出版社, 2006: 77
24 Zhang Q C . A new type of turbine disc and blade material—low segregation superalloy [J]. Aeroengine, 1995, (2): 14
张庆春 . 新型涡轮盘及叶片材料——低偏析高温合金 [J]. 航空发动机, 1995, (2): 14
25 Zhu Y X . Low segregation superalloys [J]. Trans. Mater. Heat Treat., 1997, 18(3): 16
朱耀霄 . 低偏析高温合金 [J]. 金属热处理学报, 1997, 18(3): 16
26 Wang A C , Li Y Y , Li D F , et al . Effect of Nb and Ti contents on micro-segregation of J-90 alloy [J]. Acta Metall. Sin., 1995, 31: 216
王安川, 李依依, 李冬法 等 . Nb, Ti含量对J-90合金凝固偏析的影响 [J]. 金属学报, 1995, 31: 216
[1] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[2] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[3] Jiangang NIU, Wei XIAO. The Lattice Instability Induced by Ti-Site Ni in B2 Austenite in TiNi Alloy[J]. 金属学报, 2019, 55(2): 267-273.
[4] Gang ZHOU, Lihua YE, Hao WANG, Dongsheng XU, Changgong MENG, Rui YANG. A First-Principles Study on Basal/Prismatic Reorientation-Induced Twinning Path and Alloying Effect in Hexagonal Metals[J]. 金属学报, 2018, 54(4): 603-612.
[5] Yongchang LIU, Hongjun ZHANG, Qianying GUO, Xiaosheng ZHOU, Zongqing MA, Yuan HUANG, Huijun LI. Microstructure Evolution of Inconel 718 Superalloy During Hot Working and Its Recent Development Tendency[J]. 金属学报, 2018, 54(11): 1653-1664.
[6] Ronghua CUI, Xinyu WANG, Zhengchao DONG, Chonggui ZHONG. First Principles Study on Elastic and Thermodynamic Properties of Mg1-xZnx Alloys[J]. 金属学报, 2017, 53(9): 1133-1139.
[7] PING Faping, HU Qingmiao, YANG Ru. INVESTIGATION ON EFFECTS OF ALLOYING ON OXIDATION RESISTANCE OFγ-TiAl BY USING  FIRST PRINCIPLE[J]. 金属学报, 2013, 29(4): 385-390.
[8] ZHANG Haiyan ZHANG Shihong CHENG Ming. EVOLUTION OF δ PHASE IN INCONEL 718 ALLOY DURING DELTA PROCESS[J]. 金属学报, 2009, 45(12): 1451-1455.
[9] NIU Jiangang; WANG Baojun; WANG Cuibiao; TIAN Xiao. FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE, BONDING CHARACTERISTIC AND BONDING STRENGTH OF TiN(111)/BN/TiN(111) INTERFACE[J]. 金属学报, 2009, 45(10): 1185-1189.
[10] CHEN Liqing SUI Fengli LIU Xianghua. GRAIN GROWTH MODEL OF INCONEL 718 ALLOY FORGED SLAB IN REHEATING PROCESS PRIOR TO ROUGH ROLLING[J]. 金属学报, 2009, 45(10): 1242-1248.
No Suggested Reading articles found!