|
|
Toughening of Nanostructured Metals |
ZHAO Yonghao( ), MAO Qingzhong |
Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing Universityof Science and Technology, Nanjing 210094, China |
|
Cite this article:
ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals. Acta Metall Sin, 2022, 58(11): 1385-1398.
|
Abstract Metallic structural materials have a wide range of industrial applications (including in the aviation, aerospace, navigation, military industry, nuclear power, chemical industry, construction, and bridge-building fields) due to their unique properties (such as heat resistance and high strength and toughness). At present, there are development opportunities for metallic structural materials, but these materials are also facing challenges due to the gradual substitution of carbon fiber composites and the increasing shortage of metal mineral resources. China's metallic structural material industry is facing development roadblocks and opportunities. Nanostructured metals and alloys have a wide range of potential industrial applications in the field of aviation, aerospace, navigation, military industry with requirements for energy conservation and weight reduction due to their high strength, but their low fracture elongation is a major limitation. The low ductility of nanostructured metals is caused by their low strain hardening rate; the strain hardening rate is caused by the difficulty of dislocation accumulation. This is because the small grain size limits dislocation propagation and reaction. After more than 20 years of research, the low ductility of nanostructured metals has been improved by tailoring the metal microstructures, such as by introducing nano-precipitation, twin boundaries, multi-scale grain distribution, twinning, or phase transformation, nano-gradient structure, and heterogeneous structure, or by lowering dislocation density, etc. These toughening schemes improve the dislocation accumulation capacity and strain hardening rate of nanostructured metals, and ultimately improve their toughness. The tensile properties of nanostructured metals are closely related to their microstructures and deformation temperature, strain rate, tensile sample size, and loading state.
|
Received: 24 April 2022
|
|
Fund: National Key Research and Development Program of China(2021YFA1200203);National Natural Science Foundation of China(51971112);Fundamental Research Funds for the Central Universities(30919011405) |
About author: ZHAO Yonghao, professor, Tel: (025)84315304, E-mail: yhzhao@njust.edu.cn
|
1 |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581
pmid: 25190791
|
2 |
Gleiter H. Nanocrystalline materials [J]. Prog. Mater. Sci., 1989, 33: 223
doi: 10.1016/0079-6425(89)90001-7
|
3 |
Suryanarayana C, Koch C C. Nanocrystalline materials-current research and future directions [J]. Hyperfine Interact., 2000, 130: 5
|
4 |
Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement [J]. Prog. Mater. Sci., 2006, 51: 881
doi: 10.1016/j.pmatsci.2006.02.003
|
5 |
Lin Y J, Wen H M, Li Y, et al. Erratum to: Stress-induced grain growth in an ultra-fine grained Al alloy [J]. Metall. Mater. Trans., 2014, 45B: 1948
|
6 |
Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Prog. Mater. Sci., 2000, 45: 103
doi: 10.1016/S0079-6425(99)00007-9
|
7 |
Zhilyaev A P, Langdon T G. Using high-pressure torsion for metal processing: Fundamentals and applications [J]. Prog. Mater. Sci., 2008, 53: 893
doi: 10.1016/j.pmatsci.2008.03.002
|
8 |
Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579
doi: 10.1016/S1359-6454(98)00365-6
|
9 |
Li Y S, Tao N R, Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures [J]. Acta Mater., 2008, 56: 230
doi: 10.1016/j.actamat.2007.09.020
|
10 |
Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach [J]. J. Mater. Sci. Technol., 1999, 15: 193
|
11 |
Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Mater., 2002, 50: 4603
doi: 10.1016/S1359-6454(02)00310-5
|
12 |
Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342: 337
doi: 10.1126/science.1242578
pmid: 24136963
|
13 |
Mao Q Z, Liu Y F, Zhao Y H. A review on mechanical properties and microstructure of ultrafine grained metals and alloys processed by rotary swaging [J]. J. Alloys Compd., 2022, 896: 163122
doi: 10.1016/j.jallcom.2021.163122
|
14 |
Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2006, 51: 427
doi: 10.1016/j.pmatsci.2005.08.003
|
15 |
Koch C C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals [J]. Scr. Mater., 2003, 49: 657
doi: 10.1016/S1359-6462(03)00394-4
|
16 |
Ma E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals [J]. Scr. Mater., 2003, 49: 663
doi: 10.1016/S1359-6462(03)00396-8
|
17 |
Koch C C, Youssef K M, Scattergood R O, et al. Breakthroughs in optimization of mechanical properties of nanostructured metals and alloys [J]. Adv. Eng. Mater., 2005, 7: 787
doi: 10.1002/adem.200500094
|
18 |
Ma E. Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys [J]. JOM, 2006, 58(4): 49
doi: 10.1007/s11837-006-0215-5
|
19 |
Koch C C. Structural nanocrystalline materials: An overview [J]. J. Mater. Sci., 2007, 42: 1403
doi: 10.1007/s10853-006-0609-3
|
20 |
Zhao Y H, Zhu Y T, Lavernia E J. Strategies for improving tensile ductility of bulk nanostructured materials [J]. Adv. Eng. Mater., 2010, 12: 769
doi: 10.1002/adem.200900335
|
21 |
Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
|
22 |
Darling K A, VanLeeuwen B K, Koch C C, et al. Thermal stability of nanocrystalline Fe-Zr alloys [J]. Mater. Sci. Eng., 2010, A527: 3572
|
23 |
Atwater M A, Scattergood R O, Koch C C. The stabilization of nanocrystalline copper by zirconium [J]. Mater. Sci. Eng., 2013, A559: 250
|
24 |
Fu H L, Zhou X, Xue H T, et al. Breaking the purity-stability dilemma in pure Cu with grain boundary relaxation [J]. Mater. Today, 2022, 55: 66
doi: 10.1016/j.mattod.2022.03.002
|
25 |
Chauhan M, Mohamed F A. Investigation of low temperature thermal stability in bulk nanocrystalline Ni [J]. Mater. Sci. Eng., 2006, A427: 7
|
26 |
Tao J M, Zhu X K, Scattergood R O, et al. The thermal stability of high-energy ball-milled nanostructured Cu [J]. Mater. Des., 2013, 50: 22
doi: 10.1016/j.matdes.2013.02.083
|
27 |
Liang N N, Liu J Z, Lin S C, et al. A multiscale architectured CuCrZr alloy with high strength, electrical conductivity and thermal stability [J]. J. Alloys Compd., 2018, 735: 1389
doi: 10.1016/j.jallcom.2017.11.309
|
28 |
Liang N N, Zhao Y H, Li Y, et al. Influence of microstructure on thermal stability of ultrafine-grained Cu processed by equal channel angular pressing [J]. J. Mater. Sci., 2018, 53: 13173
doi: 10.1007/s10853-018-2548-1
|
29 |
Tang L L, Zhao Y H, Islamgaliev R K, et al. Microstructure and thermal stability of nanocrystalline Mg-Gd-Y-Zr alloy processed by high pressure torsion [J]. J. Alloys Compd., 2017, 721: 577
doi: 10.1016/j.jallcom.2017.05.164
|
30 |
Zhang Y S, Zhang W, Wang X, et al. Microstructure and mechanical property evolutions of bulk core-shell structured Ti-N alloys during annealing [J]. J. Alloys Compd., 2017, 710: 418
doi: 10.1016/j.jallcom.2017.03.254
|
31 |
Liang N N, Xu R R, Wu G Z, et al. High thermal stability of nanocrystalline FeNi2CoMo0.2V0.5 high-entropy alloy by twin boundary and sluggish diffusion [J]. Mater. Sci. Eng., 2022, A848: 143399
|
32 |
Liu X R, Wei D J, Zhuang L M, et al. Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding [J]. Mater. Sci. Eng., 2015, A642: 1
|
33 |
Liu X R, Zhuang L M, Zhao Y H. Microstructure and mechanical properties of ultrafine-grained copper by accumulative roll bonding and subsequent annealing [J]. Materials, 2020, 13: 5171
doi: 10.3390/ma13225171
|
34 |
Xu R R, Liang N N, Zhuang L M, et al. Microstructure and mechanical behaviors of Al/Cu laminated composites fabricated by accumulative roll bonding and intermediate annealing [J]. Mater. Sci. Eng., 2022, A832: 142510
|
35 |
Wan Y C, Tang B, Gao Y H, et al. Bulk nanocrystalline high-strength magnesium alloys prepared via rotary swaging [J]. Acta Mater., 2020, 200: 274
doi: 10.1016/j.actamat.2020.09.024
|
36 |
Mao Q Z, Zhang Y S, Liu J Z, et al. Breaking material property trade-offs via macrodesign of microstructure [J]. Nano Lett., 2021, 21: 3191
doi: 10.1021/acs.nanolett.1c00451
|
37 |
Mao Q Z, Zhang Y S, Guo Y Z, et al. Enhanced electrical conductivity and mechanical properties in thermally stable fine-grained copper wire [J]. Commun. Mater., 2021, 2: 46
doi: 10.1038/s43246-021-00150-1
|
38 |
Mao Q Z, Chen X, Li J S, et al. Nano-gradient materials prepared by rotary swaging [J]. Nanomaterials, 2021, 11: 2223
doi: 10.3390/nano11092223
|
39 |
Yang Y, Chen X, Nie J F, et al. Achieving ultra-strong magnesium-lithium alloys by low-strain rotary swaging [J]. Mater. Res. Lett., 2021, 9: 255
doi: 10.1080/21663831.2021.1891150
|
40 |
Mao Q Z, Wang L, Nie J F, et al. Enhancing strength and electrical conductivity of Cu-Cr composite wire by two-stage rotary swaging and aging treatments [J]. Composites, 2022, 231B: 109567
|
41 |
Chen Y Y, Nie J F, Wang F, et al. Revealing hetero-deformation induced (HDI) stress strengthening effect in laminated Al-(TiB2 +TiC)p/6063 composites prepared by accumulative roll bonding [J]. J. Alloys Compd., 2020, 815: 152285
doi: 10.1016/j.jallcom.2019.152285
|
42 |
Nie J F, Liu M X, Wang F, et al. Fabrication of Al/Mg/Al composites via accumulative roll bonding and their mechanical properties [J]. Materials, 2016, 9: 951
doi: 10.3390/ma9110951
|
43 |
Yang Y, Nie J F, Mao Q Z, et al. Improving the combination of electrical conductivity and tensile strength of Al 1070 by rotary swaging deformation [J]. Results Phys., 2019, 13: 102236
doi: 10.1016/j.rinp.2019.102236
|
44 |
Lu F H, Nie J F, Ma X, et al. Simultaneously improving the tensile strength and ductility of the AlNp/Al composites by the particle's hierarchical structure with bimodal distribution and nano-network [J]. Mater. Sci. Eng., 2020, A770: 138519
|
45 |
Chen X, Liu C M, Wan Y C, et al. Grain refinement mechanisms in gradient nanostructured AZ31B Mg alloy prepared via rotary swaging [J]. Metall. Mater. Trans., 2021, 52A: 4053
|
46 |
Nie J F, Lu F H, Huang Z W, et al. Improving the high-temperature ductility of Al composites by tailoring the nanoparticle network [J]. Materialia, 2020, 9: 100523
doi: 10.1016/j.mtla.2019.100523
|
47 |
Sanders P G, Youngdahl C J, Weertman J R. The strength of nanocrystalline metals with and without flaws [J]. Mater. Sci. Eng., 1997, A234-236: 77
|
48 |
Zhao Y H, Topping T, Li Y, et al. Strength and ductility of Bi-modal Cu [J]. Adv. Eng. Mater., 2011, 13: 865
doi: 10.1002/adem.201100019
|
49 |
Hart E W. Theory of the tensile test [J]. Acta Metall., 1967, 15: 351
doi: 10.1016/0001-6160(67)90211-8
|
50 |
Budrov Z, Van Swygenhoven H, Derlet P M, et al. Plastic deformation with reversible peak broadening in nanocrystalline nickel [J]. Science, 2004, 304: 273
pmid: 15073373
|
51 |
Yamakov V, Wolf D, Phillpot S R, et al. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation [J]. Nat. Mater., 2004, 3: 43
pmid: 14704784
|
52 |
Van Swygenhoven H, Derlet P M, Frøseth A G. Stacking fault energies and slip in nanocrystalline metals [J]. Nat. Mater., 2004, 3: 399
pmid: 15156199
|
53 |
Wei Q, Cheng S, Ramesh K T, et al. Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals [J]. Mater. Sci. Eng., 2004, A381: 71
|
54 |
Kelly A, Nicholson R B. Strengthening Methods in Crystals [M]. Amsterdam: Elsevier, 1971: 1
|
55 |
Luan B F, Wu G H, Hansen N, et al. High strength Al2O3p/6061 Al composites: Effect of particles, subgrains and precipitates [J]. Mater. Sci. Technol., 2007, 23: 233
doi: 10.1179/174328407X154365
|
56 |
Zhao Y H, Liao X Z, Cheng S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys [J]. Adv. Mater., 2006, 18: 2280
doi: 10.1002/adma.200600310
|
57 |
Shanmugasundaram T, Murty B S, Sarma V S. Development of ultrafine grained high strength Al-Cu alloy by cryorolling [J]. Scr. Mater., 2006, 54: 2013
doi: 10.1016/j.scriptamat.2006.03.012
|
58 |
Cheng S, Zhao Y H, Zhu Y T, et al. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation [J]. Acta Mater., 2007, 55: 5822
doi: 10.1016/j.actamat.2007.06.043
|
59 |
Takata N, Ohtake Y, Kita K, et al. Increasing the ductility of ultrafine-grained copper alloy by introducing fine precipitates [J]. Scr. Mater., 2009, 60: 590
doi: 10.1016/j.scriptamat.2008.12.018
|
60 |
Hu C M, Lai C M, Du X H, et al. Enhanced tensile plasticity in ultrafine-grained metallic composite fabricated by friction stir process [J]. Scr. Mater., 2008, 59: 1163
doi: 10.1016/j.scriptamat.2008.06.040
|
61 |
Kuwabara T, Kurishita H, Hasegawa M. Development of an ultra-fine grained V-1.7 mass% Y alloy dispersed with yttrium compounds having superior ductility and high strength [J]. Mater. Sci. Eng., 2006, A417: 16
|
62 |
Kim W J, Sa Y K. Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears [J]. Scr. Mater., 2006, 54: 1391
doi: 10.1016/j.scriptamat.2005.11.066
|
63 |
Hassan S F, Gupta M. Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement [J]. Metall. Mater. Trans., 2005, 36A: 2253
|
64 |
Song R, Ponge D, Raabe D. Improvement of the work hardening rate of ultrafine grained steels through second phase particles [J]. Scr. Mater., 2005, 52: 1075
doi: 10.1016/j.scriptamat.2005.02.016
|
65 |
Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544
pmid: 23353630
|
66 |
Zhao Y H. In situ thermomechanical processing to avoid grain boundary precipitation and strength-ductility loss of age hardening alloys [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 1205
doi: 10.1016/S1003-6326(21)65572-3
|
67 |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815
pmid: 30467166
|
68 |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
|
69 |
Jin Z H, Gumbsch P, Albe K, et al. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals [J]. Acta Mater., 2008, 56: 1126
doi: 10.1016/j.actamat.2007.11.020
|
70 |
You Z S, Li X Y, Gui L J, et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals [J]. Acta Mater., 2013, 61: 217
doi: 10.1016/j.actamat.2012.09.052
|
71 |
Cheng S, Zhao Y H, Wang Y M, et al. Structure modulation driven by cyclic deformation in nanocrystalline NiFe [J]. Phys. Rev. Lett., 2010, 104: 255501
doi: 10.1103/PhysRevLett.104.255501
|
72 |
Gu L, Liang N N, Chen Y Y, et al. Achieving maximum strength-ductility combination in fine-grained Cu-Zn alloy via detwinning and twinning deformation mechanisms [J]. J. Alloys Compd., 2022, 906: 164401
doi: 10.1016/j.jallcom.2022.164401
|
73 |
Shi S J, Dai L J, Zhao Y H. Ternary relation among stacking fault energy, grain size and twin nucleation size in nanocrystalline and ultrafine grained CuAl alloys [J]. J. Alloys Compd., 2022, 896: 162953
doi: 10.1016/j.jallcom.2021.162953
|
74 |
Jiang W, Gao X Z, Cao Y, et al. Charpy impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy at ambient and cryogenic temperatures [J]. Mater. Sci. Eng., 2022, A837: 142735
|
75 |
Gao X Z, Dai L J, Zhao Y H. Twin boundary-dislocation interactions in nanocrystalline Cu-30% Zn alloys prepared by high pressure torsion [J]. J. Mater. Res. Technol., 2020, 9: 11958
doi: 10.1016/j.jmrt.2020.08.060
|
76 |
Li Y S, Dai L J, Cao Y, et al. Grain size effect on deformation twin thickness in a nanocrystalline metal with low stacking-fault energy [J]. J. Mater. Res., 2019, 34: 2398
doi: 10.1557/jmr.2019.194
|
77 |
Gao X Z, Lu Y P, Liu J Z, et al. Extraordinary ductility and strain hardening of Cr26Mn20Fe20Co20Ni14 TWIP high-entropy alloy by cooperative planar slipping and twinning [J]. Materialia, 2019, 8: 100485
doi: 10.1016/j.mtla.2019.100485
|
78 |
Jiang W, Gao X Z, Guo Y Z, et al. Dynamic impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy [J]. Mater. Sci. Eng., 2021, A824: 141858
|
79 |
Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
|
80 |
Andrews P V, West M B, Robeson C R. The effect of grain boundaries on the electrical resistivity of polycrystalline copper and aluminium [J]. Philos. Mag., 1969, 19: 887
|
81 |
Callister W D. Materials Science and Engineering: An Introduction [M]. 7th Ed., New York: John Wiley & Sons, Inc., 2007: 674
|
82 |
Zhao Y H, Bingert J F, Liao X Z, et al. Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper [J]. Adv. Mater., 2006, 18: 2949
doi: 10.1002/adma.200601472
|
83 |
Whang S H. Nanostructured Metals and Alloys [M]. Oxford: Woodhead Publishing, 2011: 375
|
84 |
Legros M, Elliott B R, Rittner M N, et al. Microsample tensile testing of nanocrystalline metals [J]. Philos. Mag., 2000, 80A: 1017
|
85 |
Tellkamp V L, Lavernia E J, Melmed A. Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy [J]. Metall. Mater. Trans., 2001, 32A: 2335
|
86 |
Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
|
87 |
Zhao Y H, Topping T, Bingert J F, et al. High tensile ductility and strength in bulk nanostructured nickel [J]. Adv. Mater., 2008, 20: 3028
doi: 10.1002/adma.200800214
|
88 |
Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships [J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141
doi: 10.1016/j.cossms.2011.04.002
|
89 |
Cheng S, Choo H, Zhao Y H, et al. High ductility of ultrafine-grained steel via phase transformation [J]. J. Mater. Res., 2008, 23: 1578
doi: 10.1557/JMR.2008.0213
|
90 |
Wang Y M, Ott R T, Hamza A V, et al. Achieving large uniform tensile ductility in nanocrystalline metals [J]. Phys. Rev. Lett., 2010, 105: 215502
doi: 10.1103/PhysRevLett.105.215502
|
91 |
Zhao Y H, Zhu Y T, Liao X Z, et al. Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy [J]. Appl. Phys. Lett., 2006, 89: 121906
doi: 10.1063/1.2356310
|
92 |
Zhao Y H, Bingert J F, Topping T D, et al. Mechanical behavior, deformation mechanism and microstructure evolutions of ultrafine-grained Al during recovery via annealing [J]. Mater. Sci. Eng., 2020, A772: 138706
|
93 |
Zhao Y H, Bingert J F, Zhu Y T, et al. Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density [J]. Appl. Phys. Lett., 2008, 92: 081903
|
94 |
Meng A, Chen X, Nie J F, et al. Microstructure evolution and mechanical properties of commercial pure titanium subjected to rotary swaging [J]. J. Alloys Compd., 2021, 859: 158222
doi: 10.1016/j.jallcom.2020.158222
|
95 |
Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
doi: 10.1126/science.1200177
pmid: 21330487
|
96 |
Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
doi: 10.1073/pnas.1324069111
|
97 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
|
98 |
Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
|
99 |
Zhang Y S, Zhao Y H, Zhang W, et al. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity [J]. Sci. Rep., 2017, 7: 40039
doi: 10.1038/srep40039
pmid: 28059150
|
100 |
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
|
101 |
Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
|
102 |
Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
|
103 |
Wang Y M, Ma E, Valiev R Z, et al. Tough nanostructured metals at cryogenic temperatures [J]. Adv. Mater., 2004, 16: 328
doi: 10.1002/adma.200305679
|
104 |
Wang Y M, Ma E. Three strategies to achieve uniform tensile deformation in a nanostructured metal [J]. Acta Mater., 2004, 52: 1699
doi: 10.1016/j.actamat.2003.12.022
|
105 |
Yu C Y, Kao P W, Chang C P. Transition of tensile deformation behaviors in ultrafine-grained aluminum [J]. Acta Mater., 2005, 53: 4019
doi: 10.1016/j.actamat.2005.05.005
|
106 |
Jia D, Wang Y M, Ramesh K T, et al. Deformation behavior and plastic instabilities of ultrafine-grained titanium [J]. Appl. Phys. Lett., 2001, 79: 611
doi: 10.1063/1.1384000
|
107 |
Stolyarov V V, Valiev R Z, Zhu Y T. Enhanced low-temperature impact toughness of nanostructured Ti [J]. Appl. Phys. Lett., 2006, 88: 041905
|
108 |
Cheng S, Zhao Y H, Guo Y Z, et al. High plasticity and substantial deformation in nanocrystalline NiFe alloys under dynamic loading [J]. Adv. Mater., 2009, 21: 5001
doi: 10.1002/adma.200901991
pmid: 25378188
|
109 |
Zhao Y H, Guo Y Z, Wei Q, et al. Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu [J]. Scr. Mater., 2008, 59: 627
doi: 10.1016/j.scriptamat.2008.05.031
|
110 |
Zhao Y H, Guo Y Z, Wei Q, et al. Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves [J]. Mater. Sci. Eng., 2009, A525: 68
|
111 |
Zhao Y H, Gu Y L, Guo Y Z. Plasticity and deformation mechanisms of ultrafine-grained Ti in necking region revealed by digital image correlation technique [J]. Nanomaterials, 2021, 11: 574
doi: 10.3390/nano11030574
|
112 |
Zhao Y H, Gu Y L. Deformation mechanisms and plasticity of ultrafine-grained Al under complex stress state revealed by digital image correlation technique [J]. Nanotechnol. Rev., 2021, 10: 73
doi: 10.1515/ntrev-2021-0007
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|