Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (10): 1221-1235    DOI: 10.11900/0412.1961.2021.00310
Overview Current Issue | Archive | Adv Search |
Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing
WANG Di1, HUANG Jinhui1, TAN Chaolin1,2(), YANG Yongqiang1
1.School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
2.Singapore Institute of Manufacturing Technology, A*STAR, 637662, Singapore
Cite this article: 

WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing. Acta Metall Sin, 2022, 58(10): 1221-1235.

Download:  HTML  PDF(4450KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The unique cyclic thermal input in laser additive manufacturing (LAM) induced by layerwise deposition manner has been one of the hot research topics. This technique has shed light on the potential of using intrinsic heat treatment (IHT) to tune microstructures and enhance the mechanical performance of materials. Therefore, this article elaborates on cyclic thermal input in LAM. Herein, the influence of process parameters, deposition direction, interlayer delay time, substrate preheating, and laser remelting on cyclic thermal input was reviewed in detail. One of our key findings was that the cyclic thermal input can significantly affect the microstructures such as grain orientation, phase composition, and second phase precipitation, which in turn affects the mechanical properties of materials. The IHT effect generated by cyclic thermal input provides an opportunity for material performance enhancement and new materials development. Hence, the understanding of internal relationships among composition-process-IHT effect-microstructures-mechanical properties is critical. This is not only essential for material performance enhancement through tailoring of IHT effect but also provides enlightenment for the research and development of LAM-specific new materials based on IHT effect.

Key words:  laser additive manufacturing      cyclic thermal input      intrinsic heat treatment      anisotropy      new materials development     
Received:  29 July 2021     
ZTFLH:  TG655  
Fund: National Natural Science Foundation of China(52005189);National Key Research and Development Progrom of China(2021YFE0203500);Guangdong Province Basic and Applied Basic Research Fund Project(2019A1515110542);Guangdong Province Basic and Applied Basic Research Fund Project(2022B1515020064)
About author:  TAN Chaolin, associate professor, Tel: (020)87114484, E-mail: tclscut@163.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00310     OR     https://www.ams.org.cn/EN/Y2022/V58/I10/1221

Fig.1  Schematics of the laser powder bed fusion (LPBF) system and LPBF process parameters[4,5]
Fig.2  Schematics of the laser direct energy deposition (LDED) system component[6,7]
Fig.3  Schematic diagram depicting the multi-scale and multi-physical processes in laser additive manufacturing (LAM) (a)[8], and the main factors affecting the cyclic thermal input (b)
Fig.4  Schematic of the temperature field in melt pool (a)[5], and the time-temperature histories of the deposited materials at the bottom and top (b)[16] (IHT—intrinsic heat treatment)
Fig.5  Influence of the cyclic thermal input on mechanical properties in LAM processed materials (IDT—interlayer delay time)[21-25]
(a) 18Ni300 (b) 316L (c) Ti6Al4V (d) H13
Fig.6  A summary of laser scan strategies (a) and the effect of laser scan strategies on crystal orientations (b)[40]
Fig.7  Principle of in-situ precipitation strengthening and local microstructure control process[50,51]
(a) real-time thermal history[50]
(b) layered structure diagram[50]
(c) secondary electron micrographs of soft and hard areas[50]
(d) atom probe tomography (APT) analysis of the soft and hard zones[50]
(e) microstructure with 30 s IDT[51]
(f) microstructure with 250 s IDT[51]
Fig.8  Schematic of residual stress generation (a), and the EBSD images showing the grain orientation of LPBF-processed Ti-45Al-2Cr-5Nb at different preheating temperatures[55] (b) (MZ—melting zone, HAZ—heat affected zone; σtensile—tensile stress, σcompressive—compressive stress, εthermal—thermal strain, εplastic—plastic strain, σys—yield stress)
Fig.9  Schematic of microstructure evolution of LPBF-produced 300M steel[62] (a), and excellent mechanical properties of AISI 420 based on in situ annealing effect[63] (b) (Ac1—austenitzing initial isotherm, Tm—melting point, Tr—recrystallizing temperature; PAG—prior austenite grain)
Fig.10  The influence of IHT effect on microstructure (AP—as-produced, SLM—selective laser melting, LMD—laser metal deposition)[4,16,64,65]
(a) microstructure of different layers of LDED-produced Scalmalloy samples[16]
(b) APT analysis of Fe-19Ni-xAl[64]
(c) radial distribution function (RDF) of titanium atoms in maraging steel[65]
(d) nano-precipitates in LPBF-produced maraging steel[4]
Fig.11  Perspectives on research and development (R&D) routes of LAM new approach by fully understanding and utilizing unique thermal history[5,65,71-74] (AM—additive manufacturing, CET—columnar-to-equiaxed transition)
1 Yang Y Q, Chen J, Song C H, et al. Current status and progress on technology of selective laser melting of metal parts [J]. Laser Optoelect. Prog., 2018, 55(1): 011401
杨永强, 陈 杰, 宋长辉 等. 金属零件激光选区熔化技术的现状及进展 [J]. 激光与光电子学进展, 2018, 55(1): 011401
2 Zheng B, Haley J C, Yang N, et al. On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition [J]. Mater. Sci. Eng., 2019, A764: 138243
3 Tan C L, Chew Y X, Bi G J, et al. Additive manufacturing of steel-copper functionally graded material with ultrahigh bonding strength [J]. J. Mater. Sci. Technol., 2021, 72: 217
doi: 10.1016/j.jmst.2020.07.044
4 Tan C L, Zhou K S, Ma W Y, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel [J]. Mater. Des., 2017, 134: 23
doi: 10.1016/j.matdes.2017.08.026
5 Uhlmann E, Bergmann A, Gridin W. Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting [J]. Procedia CIRP, 2015, 35: 8
doi: 10.1016/j.procir.2015.08.060
6 Chen L Q, Yao X L, Xu P, et al. Rapid surface defect identification for additive manufacturing with in-situ point cloud processing and machine learning [J]. Virtual Phys. Prototy., 2021, 16: 50
doi: 10.1080/17452759.2020.1832695
7 Wolff S J, Lin S, Faierson E J, et al. A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4V [J]. Acta Mater., 2017, 132: 106
doi: 10.1016/j.actamat.2017.04.027
8 Panwisawas C, Tang Y T, Reed R C. Metal 3D printing as a disruptive technology for superalloys [J]. Nat. Commun., 2020, 11: 2327
doi: 10.1038/s41467-020-16188-7 pmid: 32393778
9 De La Batut B, Fergani O, Brotan V, et al. Analytical and numerical temperature prediction in direct metal deposition of Ti6Al4V [J]. J. Manuf. Mater. Process., 2017, 1: 3
10 Promoppatum P, Yao S C, Pistorius P C, et al. A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of inconel 718 products made by laser powder-bed fusion [J]. Engineering, 2017, 3: 685
doi: 10.1016/J.ENG.2017.05.023
11 Short A, McCartney D G, Webb P, et al. Parametric envelopes for keyhole plasma arc welding of a titanium alloys [A]. Proceedings of the 8th International Conference on Trends in Welding Research [C]. Pine Mountain: ASM International, 2008: 690
12 Farahmand P, Kovacevic R. An experimental-numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser [J]. Opt. Laser Technol., 2014, 63: 154
doi: 10.1016/j.optlastec.2014.04.016
13 Schiller S, Heisig U, Panzer S. Electron Beam Technology [M]. New York: Wiley, 1982: 1
14 Manvatkar V, De A, Debroy T. Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process [J]. Mater. Sci. Technol., 2015, 31: 924
doi: 10.1179/1743284714Y.0000000701
15 Manvatkar V, De A, Debroy T. Heat transfer and material flow during laser assisted multi-layer additive manufacturing[J]. J. Appl. Phys., 2014, 116: 124905
doi: 10.1063/1.4896751
16 Kürnsteiner P, Bajaj P, Gupta A, et al. Control of thermally stable core-shell nano-precipitates in additively manufactured Al-Sc-Zr alloys [J]. Addit. Manuf., 2020, 32: 100910
17 Thompson S M, Bian L K, Shamsaei N, et al. An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics [J]. Addit. Manuf., 2015, 8: 36
18 Han L J, Liou F W, Musti S. Thermal behavior and geometry model of melt pool in laser material process [J]. J. Heat Transfer., 2005, 127: 1005
doi: 10.1115/1.2005275
19 Tan C L, Zhou K S, Ma W Y, et al. Selective laser melting of high-performance pure tungsten: Parameter design, densification behavior and mechanical properties [J]. Sci. Technol. Adv. Mater., 2018, 19: 370
doi: 10.1080/14686996.2018.1455154
20 Wang L, Felicelli S. Analysis of thermal phenomena in LENS™ deposition [J]. Mater. Sci. Eng., 2006, A435-436: 625
21 Yadollahi A, Shamsaei N, Thompson S M, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel [J]. Mater. Sci. Eng., 2015, A644: 171
22 Mertens R, Vrancken B, Holmstock N, et al. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts [J]. Phys. Procedia, 2016, 83: 882
doi: 10.1016/j.phpro.2016.08.092
23 Xu W, Lui E W, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance [J]. Acta Mater., 2017, 125: 390
doi: 10.1016/j.actamat.2016.12.027
24 Mooney B, Kourousis K I, Raghavendra R. Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments [J]. Addit. Manuf., 2019, 25: 19
doi: 10.1016/j.addma.2018.10.032
25 Chen L, Richter B, Zhang X Z, et al. Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion [J]. Mater. Sci. Eng., 2021, A802: 140579
26 Chen H Y, Gu D D, Ge Q, et al. Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing [J]. Int. J. Miner. Metall. Mater., 2021, 28: 462
doi: 10.1007/s12613-020-2133-x
27 Parry L A, Ashcroft I A, Wildman R D. Geometrical effects on residual stress in selective laser melting [J]. Addit. Manuf., 2019, 25: 166
doi: 10.1016/j.addma.2018.09.026
28 Seifi M, Gorelik M, Waller J, et al. Progress towards metal additive manufacturing standardization to support qualification and certification [J]. JOM, 2017, 69: 439
doi: 10.1007/s11837-017-2265-2
29 Yang J J, Han J, Yu H C, et al. Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy [J]. Mater. Des., 2016, 110: 558
doi: 10.1016/j.matdes.2016.08.036
30 King W E, Barth H D, Castillo V M, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing [J]. J. Mater. Process. Technol., 2014, 214: 2915
doi: 10.1016/j.jmatprotec.2014.06.005
31 Zhao M H. Study on thermal behavior and microstructure of H13 tool steel fabricated by laser additive manufacturing [D]. Beijing: Beijing University of Chemical Technology, 2020
赵明皇. 激光增材制造H13工具钢热行为及微观结构研究 [D]. 北京: 北京化工大学, 2020
32 Yang J J. Microstructural evolution and control of Ti-6Al-4V alloy produced by selective laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2017
杨晶晶. 激光选区熔化成形Ti-6Al-4V合金的组织演变及调控 [D]. 武汉: 华中科技大学, 2017
33 Majeed M, Vural M, Raja S, et al. Finite element analysis of thermal behavior in maraging steel during SLM process [J]. Optik, 2020, 208: 164128
doi: 10.1016/j.ijleo.2019.164128
34 Chen D N, Liu T T, Liao W H, et al. Temperature field during selective laser melting of metal powder under different scanning strategies [J]. Chin. J. Lasers, 2016, 43(4): 68
陈德宁, 刘婷婷, 廖文和 等. 扫描策略对金属粉末选区激光熔化温度场的影响 [J]. 中国激光, 2016, 43(4): 68
35 Jia H L, Sun H, Wang H Z, et al. Scanning strategy in selective laser melting (SLM): A review [J]. Int. J. Adv. Manuf. Technol., 2021, 113: 2413
doi: 10.1007/s00170-021-06810-3
36 Attard B, Cruchley S, Beetz C, et al. Microstructural control during laser powder fusion to create graded microstructure Ni-superalloy components [J]. Addit. Manuf., 2020, 36
37 Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation [J]. Addit. Manuf., 2016, 12: 1
38 Ulbricht A, Altenburg S J, Sprengel M, et al. Separation of the formation mechanisms of residual stresses in LPBF 316L [J]. Metals, 2020, 10: 1234
doi: 10.3390/met10091234
39 Zhou X. Research on micro-scale melt pool characteristics and solidified microstructures in selective laser melting [D]. Beijing: Tsinghua University, 2016
周 鑫. 激光选区熔化微尺度熔池特性与凝固微观组织 [D]. 北京: 清华大学, 2016
40 Bhardwaj T, Shukla M. Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel [J]. Mater. Sci. Eng., 2018, A734: 102
41 Tan C L, Zhou K S, Ma W Y, et al. Research progress of laser additive manufacturing of maraging steels [J]. Acta Metall. Sin., 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
谭超林, 周克崧, 马文有 等. 激光增材制造成型马氏体时效钢研究进展 [J]. 金属学报, 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
42 Bai Y C. Research on the mechanism and properties controllability of selective laser melting of maraging steel [D]. Guangzhou: South China University of Technology, 2018
白玉超. 马氏体时效钢激光选区熔化成型机理及其控性研究 [D]. 广州: 华南理工大学, 2018
43 Pegues J, Roach M, Scott Williamson R, et al. Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V [J]. Int. J. Fatigue, 2018, 116: 543
doi: 10.1016/j.ijfatigue.2018.07.013
44 Tan C L. Selective laser melting of maraging steel and its composite, gradient materials [D]. Guangzhou: South China University of Technology, 2019
谭超林. 选区激光熔化成型马氏体时效钢及其复合、梯度材料研究 [D]. 广州: 华南理工大学, 2019
45 Deng G W, Tan C L, Wang D, et al. Defects suppression and mechanism in additive manufacturing high-volume SiC reinforced maraging steel [J]. J. Mech. Eng., 2021, 57(17): 243
doi: 10.3901/JME.2021.17.243
邓国威, 谭超林, 王 迪 等. 增材制造高体积陶瓷增强马氏体钢缺陷抑制与机理研究 [J]. 机械工程学报, 2021, 57(17): 243
doi: 10.3901/JME.2021.17.243
46 Wang D Z, Yu C F, Ma J, et al. Densification and crack suppression in selective laser melting of pure molybdenum [J]. Mater. Des., 2017, 129: 44
doi: 10.1016/j.matdes.2017.04.094
47 Mohr G, Altenburg S J, Hilgenberg K. Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion [J]. Addit. Manuf., 2020, 32: 101080
48 Costa L, Vilar R, Reti T, et al. Rapid tooling by laser powder deposition: Process simulation using finite element analysis [J]. Acta Mater., 2005, 53: 3987
doi: 10.1016/j.actamat.2005.05.003
49 Jendrzejewski R, Śliwiński G. Investigation of temperature and stress fields in laser cladded coatings [J]. Appl. Surf. Sci., 2007, 254: 921
doi: 10.1016/j.apsusc.2007.08.014
50 Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
51 Amirabdollahian S, Deirmina F, Harris L, et al. Towards controlling intrinsic heat treatment of maraging steel during laser directed energy deposition [J]. Scr. Mater., 2021, 201: 113973
doi: 10.1016/j.scriptamat.2021.113973
52 Nezhadfar P D, Shamsaei N, Phan N. Enhancing ductility and fatigue strength of additively manufactured metallic materials by preheating the build platform [J]. Fatigue Fract. Eng. Mater. Struct., 2021, 44: 257
doi: 10.1111/ffe.13372
53 Luo X P, Zhao M H, Li J Y, et al. Numerical study on thermodynamic behavior during selective laser melting of 24CrNiMo alloy steel [J]. Materials, 2020, 13: 45
doi: 10.3390/ma13010045
54 Zumofen L, Kirchheim A, Dennig H J. Laser powder bed fusion of 30CrNiMo8 steel for quenching and tempering: Examination of the processability and mechanical properties [J]. Prog. Addit. Manuf., 2020, 5: 75
doi: 10.1007/s40964-020-00121-x
55 Li W, Liu J, Zhou Y, et al. Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting [J]. Scr. Mater., 2016, 118: 13
doi: 10.1016/j.scriptamat.2016.02.022
56 Xue A T, Lin X, Wang L L, et al. Heat-affected coarsening of β grain in titanium alloy during laser directed energy deposition [J]. Scr. Mater., 2021, 205: 114180
doi: 10.1016/j.scriptamat.2021.114180
57 Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel [J]. Phys. Procedia, 2011, 12: 255
doi: 10.1016/j.phpro.2011.03.033
58 Kempen K, Vrancken B, Buls S, et al. Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating [J]. J. Manuf. Sci. Eng., 2014, 136: 061026
59 Chen H Y, Gu D D, Dai D H, et al. A novel approach to direct preparation of complete lath martensite microstructure in tool steel by selective laser melting [J]. Mater. Lett., 2018, 227: 128
doi: 10.1016/j.matlet.2018.05.042
60 Zhang J, Yu M J, Li Z Y, et al. The effect of laser energy density on the microstructure, residual stress and phase composition of H13 steel treated by laser surface melting [J]. J. Alloys Compd., 2021, 856: 158168
doi: 10.1016/j.jallcom.2020.158168
61 Chen X, Qiu C L. In-situ development of a sandwich microstructure with enhanced ductility by laser reheating of a laser melted titanium alloy [J]. Sci. Rep., 2020, 10: 15870
doi: 10.1038/s41598-020-72627-x pmid: 32985532
62 Jing G Y, Huang W P, Yang H H, et al. Microstructural evolution and mechanical properties of 300M steel produced by low and high power selective laser melting [J]. J. Mater. Sci. Technol., 2020, 48: 44
doi: 10.1016/j.jmst.2019.12.020
63 Tan C L, Chew Y W, Weng F, et al. Superior strength-ductility in laser aided additive manufactured high-strength steel by combination of intrinsic tempering and heat treatment [J]. Virtual Phys. Prototyping, 2021, 16: 460
doi: 10.1080/17452759.2021.1964268
64 Kürnsteiner P, Wilms M B, Weisheit A, et al. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition [J]. Acta Mater., 2017, 129: 52
doi: 10.1016/j.actamat.2017.02.069
65 Jägle E A, Sheng Z D, Wu L, et al. Precipitation reactions in age-hardenable alloys during laser additive manufacturing [J]. JOM, 2016, 68: 943
doi: 10.1007/s11837-015-1764-2
66 Barriobero-Vila P, Gussone J, Haubrich J, et al. Inducing stable α + β microstructures during selective laser melting of Ti-6Al-4V using intensified intrinsic heat treatments [J]. Materials, 2017, 10: 268
doi: 10.3390/ma10030268
67 Ma Y. The microstructure transformation of selective laser melting processed TC4 at different heights [J]. Appl. Laser, 2020, 40(5):790
马 尧. SLM成形TC4钛合金不同高度处微观组织演变 [J]. 应用激光, 2020, 40(5): 790
68 Yan J J, Zheng D L, Li H X, et al. Selective laser melting of H13: Microstructure and residual stress [J]. J. Mater. Sci., 2017, 52: 12476
doi: 10.1007/s10853-017-1380-3
69 Damon J, Koch R, Kaiser D, et al. Process development and impact of intrinsic heat treatment on the mechanical performance of selective laser melted AISI 4140 [J]. Addit. Manuf., 2019, 28: 275
70 Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
71 Mukherjee T, DebRoy T. A digital twin for rapid qualification of 3D printed metallic components [J]. Appl. Mater. Today, 2019, 14: 59
doi: 10.1016/j.apmt.2018.11.003
72 Bobbio L D, Otis R A, Borgonia J P, et al. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: Experimental characterization and thermodynamic calculations [J]. Acta Mater., 2017, 127: 133
doi: 10.1016/j.actamat.2016.12.070
73 DebRoy T, Mukherjee T, Wei H L, et al. Metallurgy, mechanistic models and machine learning in metal printing [J]. Nat. Rev. Mater., 2021, 6: 48
doi: 10.1038/s41578-020-00236-1
74 Dutta B, Froes F. Additive manufacturing technology [A]. Additive Manufacturing of Titanium Alloys [M]. Amsterdam: Elsevier, 2016: 25
[1] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[2] GE Jinguo, LU Zhao, HE Siliang, SUN Yan, YIN Shuo. Anisotropy in Microstructures and Mechanical Properties of 2Cr13 Alloy Produced by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(1): 157-168.
[3] SONG Bo, ZHANG Jinliang, ZHANG Yuanjie, HU Kai, FANG Ruxuan, JIANG Xin, ZHANG Xinru, WU Zusheng, SHI Yusheng. Research Progress of Materials Design for Metal Laser Additive Manufacturing[J]. 金属学报, 2023, 59(1): 1-15.
[4] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[5] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[6] BI Sheng, LI Zechen, SUN Haixia, SONG Baoyong, LIU Zhenyu, XIAO Bolv, MA Zongyi. Microstructure and Mechanical Properties of Carbon Nanotubes-Reinforced 7055Al Composites Fabricated by High-Energy Ball Milling and Powder Metallurgy Processing[J]. 金属学报, 2021, 57(1): 71-81.
[7] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[8] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[9] WANG Li,HE Yufeng,SHEN Jian,ZHENG Wei,LOU Langhong,ZHANG Jian. Effect of Secondary Orientation on Oxidation Anisotropy Around the Holes of Single Crystal Superalloy During Thermal Fatigue Tests[J]. 金属学报, 2019, 55(11): 1417-1426.
[10] HE Xianmei, TONG Liuniu, GAO Cheng, WANG Yichao. Effect of Nd Content on the Structure and Magnetic Properties of Si(111)/Cr/Nd-Co/Cr Thin Films Prepared by Magnetron Sputtering[J]. 金属学报, 2019, 55(10): 1349-1358.
[11] Xiaoqin MA, Qingfeng ZHAN, Jincai LI, Qingfang LIU, Baomin WANG, Runwei LI. Influence of Oblique Sputtering on Stripe Magnetic Domain Structure and Magnetic Anisotropy of CoFeB Thin Films[J]. 金属学报, 2018, 54(9): 1281-1288.
[12] Mingliang HUANG, Hongyu SUN. Interaction Between β-Sn Grain Orientation and Electromigration Behavior in Flip-Chip Lead-Free Solder Bumps[J]. 金属学报, 2018, 54(7): 1077-1086.
[13] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[14] Peibei JI, Lichu ZHOU, Xuefeng ZHOU, Feng FANG, Jianqing JIANG. Study on Anisotropic Mechanical Properties of Cold Drawn Pearlitic Steel Wire[J]. 金属学报, 2018, 54(4): 494-500.
[15] Shuangming LI, Binqiang WANG, Zhenpeng LIU, Hong ZHONG, Rui HU, Yi LIU, Ximing LUO. Grain Orientation Competitive Growth of High Melting Point Metals Ir and Mo Under Electron Beam Floating Zone Melting[J]. 金属学报, 2018, 54(10): 1435-1441.
No Suggested Reading articles found!