|
|
Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing |
WANG Di1, HUANG Jinhui1, TAN Chaolin1,2( ), YANG Yongqiang1 |
1.School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China 2.Singapore Institute of Manufacturing Technology, A*STAR, 637662, Singapore |
|
Cite this article:
WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing. Acta Metall Sin, 2022, 58(10): 1221-1235.
|
Abstract The unique cyclic thermal input in laser additive manufacturing (LAM) induced by layerwise deposition manner has been one of the hot research topics. This technique has shed light on the potential of using intrinsic heat treatment (IHT) to tune microstructures and enhance the mechanical performance of materials. Therefore, this article elaborates on cyclic thermal input in LAM. Herein, the influence of process parameters, deposition direction, interlayer delay time, substrate preheating, and laser remelting on cyclic thermal input was reviewed in detail. One of our key findings was that the cyclic thermal input can significantly affect the microstructures such as grain orientation, phase composition, and second phase precipitation, which in turn affects the mechanical properties of materials. The IHT effect generated by cyclic thermal input provides an opportunity for material performance enhancement and new materials development. Hence, the understanding of internal relationships among composition-process-IHT effect-microstructures-mechanical properties is critical. This is not only essential for material performance enhancement through tailoring of IHT effect but also provides enlightenment for the research and development of LAM-specific new materials based on IHT effect.
|
Received: 29 July 2021
|
|
Fund: National Natural Science Foundation of China(52005189);National Key Research and Development Progrom of China(2021YFE0203500);Guangdong Province Basic and Applied Basic Research Fund Project(2019A1515110542);Guangdong Province Basic and Applied Basic Research Fund Project(2022B1515020064) |
About author: TAN Chaolin, associate professor, Tel: (020)87114484, E-mail: tclscut@163.com
|
1 |
Yang Y Q, Chen J, Song C H, et al. Current status and progress on technology of selective laser melting of metal parts [J]. Laser Optoelect. Prog., 2018, 55(1): 011401
|
|
杨永强, 陈 杰, 宋长辉 等. 金属零件激光选区熔化技术的现状及进展 [J]. 激光与光电子学进展, 2018, 55(1): 011401
|
2 |
Zheng B, Haley J C, Yang N, et al. On the evolution of microstructure and defect control in 316L SS components fabricated via directed energy deposition [J]. Mater. Sci. Eng., 2019, A764: 138243
|
3 |
Tan C L, Chew Y X, Bi G J, et al. Additive manufacturing of steel-copper functionally graded material with ultrahigh bonding strength [J]. J. Mater. Sci. Technol., 2021, 72: 217
doi: 10.1016/j.jmst.2020.07.044
|
4 |
Tan C L, Zhou K S, Ma W Y, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel [J]. Mater. Des., 2017, 134: 23
doi: 10.1016/j.matdes.2017.08.026
|
5 |
Uhlmann E, Bergmann A, Gridin W. Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting [J]. Procedia CIRP, 2015, 35: 8
doi: 10.1016/j.procir.2015.08.060
|
6 |
Chen L Q, Yao X L, Xu P, et al. Rapid surface defect identification for additive manufacturing with in-situ point cloud processing and machine learning [J]. Virtual Phys. Prototy., 2021, 16: 50
doi: 10.1080/17452759.2020.1832695
|
7 |
Wolff S J, Lin S, Faierson E J, et al. A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4V [J]. Acta Mater., 2017, 132: 106
doi: 10.1016/j.actamat.2017.04.027
|
8 |
Panwisawas C, Tang Y T, Reed R C. Metal 3D printing as a disruptive technology for superalloys [J]. Nat. Commun., 2020, 11: 2327
doi: 10.1038/s41467-020-16188-7
pmid: 32393778
|
9 |
De La Batut B, Fergani O, Brotan V, et al. Analytical and numerical temperature prediction in direct metal deposition of Ti6Al4V [J]. J. Manuf. Mater. Process., 2017, 1: 3
|
10 |
Promoppatum P, Yao S C, Pistorius P C, et al. A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of inconel 718 products made by laser powder-bed fusion [J]. Engineering, 2017, 3: 685
doi: 10.1016/J.ENG.2017.05.023
|
11 |
Short A, McCartney D G, Webb P, et al. Parametric envelopes for keyhole plasma arc welding of a titanium alloys [A]. Proceedings of the 8th International Conference on Trends in Welding Research [C]. Pine Mountain: ASM International, 2008: 690
|
12 |
Farahmand P, Kovacevic R. An experimental-numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser [J]. Opt. Laser Technol., 2014, 63: 154
doi: 10.1016/j.optlastec.2014.04.016
|
13 |
Schiller S, Heisig U, Panzer S. Electron Beam Technology [M]. New York: Wiley, 1982: 1
|
14 |
Manvatkar V, De A, Debroy T. Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process [J]. Mater. Sci. Technol., 2015, 31: 924
doi: 10.1179/1743284714Y.0000000701
|
15 |
Manvatkar V, De A, Debroy T. Heat transfer and material flow during laser assisted multi-layer additive manufacturing[J]. J. Appl. Phys., 2014, 116: 124905
doi: 10.1063/1.4896751
|
16 |
Kürnsteiner P, Bajaj P, Gupta A, et al. Control of thermally stable core-shell nano-precipitates in additively manufactured Al-Sc-Zr alloys [J]. Addit. Manuf., 2020, 32: 100910
|
17 |
Thompson S M, Bian L K, Shamsaei N, et al. An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics [J]. Addit. Manuf., 2015, 8: 36
|
18 |
Han L J, Liou F W, Musti S. Thermal behavior and geometry model of melt pool in laser material process [J]. J. Heat Transfer., 2005, 127: 1005
doi: 10.1115/1.2005275
|
19 |
Tan C L, Zhou K S, Ma W Y, et al. Selective laser melting of high-performance pure tungsten: Parameter design, densification behavior and mechanical properties [J]. Sci. Technol. Adv. Mater., 2018, 19: 370
doi: 10.1080/14686996.2018.1455154
|
20 |
Wang L, Felicelli S. Analysis of thermal phenomena in LENS™ deposition [J]. Mater. Sci. Eng., 2006, A435-436: 625
|
21 |
Yadollahi A, Shamsaei N, Thompson S M, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel [J]. Mater. Sci. Eng., 2015, A644: 171
|
22 |
Mertens R, Vrancken B, Holmstock N, et al. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts [J]. Phys. Procedia, 2016, 83: 882
doi: 10.1016/j.phpro.2016.08.092
|
23 |
Xu W, Lui E W, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance [J]. Acta Mater., 2017, 125: 390
doi: 10.1016/j.actamat.2016.12.027
|
24 |
Mooney B, Kourousis K I, Raghavendra R. Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments [J]. Addit. Manuf., 2019, 25: 19
doi: 10.1016/j.addma.2018.10.032
|
25 |
Chen L, Richter B, Zhang X Z, et al. Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion [J]. Mater. Sci. Eng., 2021, A802: 140579
|
26 |
Chen H Y, Gu D D, Ge Q, et al. Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing [J]. Int. J. Miner. Metall. Mater., 2021, 28: 462
doi: 10.1007/s12613-020-2133-x
|
27 |
Parry L A, Ashcroft I A, Wildman R D. Geometrical effects on residual stress in selective laser melting [J]. Addit. Manuf., 2019, 25: 166
doi: 10.1016/j.addma.2018.09.026
|
28 |
Seifi M, Gorelik M, Waller J, et al. Progress towards metal additive manufacturing standardization to support qualification and certification [J]. JOM, 2017, 69: 439
doi: 10.1007/s11837-017-2265-2
|
29 |
Yang J J, Han J, Yu H C, et al. Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy [J]. Mater. Des., 2016, 110: 558
doi: 10.1016/j.matdes.2016.08.036
|
30 |
King W E, Barth H D, Castillo V M, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing [J]. J. Mater. Process. Technol., 2014, 214: 2915
doi: 10.1016/j.jmatprotec.2014.06.005
|
31 |
Zhao M H. Study on thermal behavior and microstructure of H13 tool steel fabricated by laser additive manufacturing [D]. Beijing: Beijing University of Chemical Technology, 2020
|
|
赵明皇. 激光增材制造H13工具钢热行为及微观结构研究 [D]. 北京: 北京化工大学, 2020
|
32 |
Yang J J. Microstructural evolution and control of Ti-6Al-4V alloy produced by selective laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2017
|
|
杨晶晶. 激光选区熔化成形Ti-6Al-4V合金的组织演变及调控 [D]. 武汉: 华中科技大学, 2017
|
33 |
Majeed M, Vural M, Raja S, et al. Finite element analysis of thermal behavior in maraging steel during SLM process [J]. Optik, 2020, 208: 164128
doi: 10.1016/j.ijleo.2019.164128
|
34 |
Chen D N, Liu T T, Liao W H, et al. Temperature field during selective laser melting of metal powder under different scanning strategies [J]. Chin. J. Lasers, 2016, 43(4): 68
|
|
陈德宁, 刘婷婷, 廖文和 等. 扫描策略对金属粉末选区激光熔化温度场的影响 [J]. 中国激光, 2016, 43(4): 68
|
35 |
Jia H L, Sun H, Wang H Z, et al. Scanning strategy in selective laser melting (SLM): A review [J]. Int. J. Adv. Manuf. Technol., 2021, 113: 2413
doi: 10.1007/s00170-021-06810-3
|
36 |
Attard B, Cruchley S, Beetz C, et al. Microstructural control during laser powder fusion to create graded microstructure Ni-superalloy components [J]. Addit. Manuf., 2020, 36
|
37 |
Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation [J]. Addit. Manuf., 2016, 12: 1
|
38 |
Ulbricht A, Altenburg S J, Sprengel M, et al. Separation of the formation mechanisms of residual stresses in LPBF 316L [J]. Metals, 2020, 10: 1234
doi: 10.3390/met10091234
|
39 |
Zhou X. Research on micro-scale melt pool characteristics and solidified microstructures in selective laser melting [D]. Beijing: Tsinghua University, 2016
|
|
周 鑫. 激光选区熔化微尺度熔池特性与凝固微观组织 [D]. 北京: 清华大学, 2016
|
40 |
Bhardwaj T, Shukla M. Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel [J]. Mater. Sci. Eng., 2018, A734: 102
|
41 |
Tan C L, Zhou K S, Ma W Y, et al. Research progress of laser additive manufacturing of maraging steels [J]. Acta Metall. Sin., 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
|
|
谭超林, 周克崧, 马文有 等. 激光增材制造成型马氏体时效钢研究进展 [J]. 金属学报, 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
|
42 |
Bai Y C. Research on the mechanism and properties controllability of selective laser melting of maraging steel [D]. Guangzhou: South China University of Technology, 2018
|
|
白玉超. 马氏体时效钢激光选区熔化成型机理及其控性研究 [D]. 广州: 华南理工大学, 2018
|
43 |
Pegues J, Roach M, Scott Williamson R, et al. Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V [J]. Int. J. Fatigue, 2018, 116: 543
doi: 10.1016/j.ijfatigue.2018.07.013
|
44 |
Tan C L. Selective laser melting of maraging steel and its composite, gradient materials [D]. Guangzhou: South China University of Technology, 2019
|
|
谭超林. 选区激光熔化成型马氏体时效钢及其复合、梯度材料研究 [D]. 广州: 华南理工大学, 2019
|
45 |
Deng G W, Tan C L, Wang D, et al. Defects suppression and mechanism in additive manufacturing high-volume SiC reinforced maraging steel [J]. J. Mech. Eng., 2021, 57(17): 243
doi: 10.3901/JME.2021.17.243
|
|
邓国威, 谭超林, 王 迪 等. 增材制造高体积陶瓷增强马氏体钢缺陷抑制与机理研究 [J]. 机械工程学报, 2021, 57(17): 243
doi: 10.3901/JME.2021.17.243
|
46 |
Wang D Z, Yu C F, Ma J, et al. Densification and crack suppression in selective laser melting of pure molybdenum [J]. Mater. Des., 2017, 129: 44
doi: 10.1016/j.matdes.2017.04.094
|
47 |
Mohr G, Altenburg S J, Hilgenberg K. Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion [J]. Addit. Manuf., 2020, 32: 101080
|
48 |
Costa L, Vilar R, Reti T, et al. Rapid tooling by laser powder deposition: Process simulation using finite element analysis [J]. Acta Mater., 2005, 53: 3987
doi: 10.1016/j.actamat.2005.05.003
|
49 |
Jendrzejewski R, Śliwiński G. Investigation of temperature and stress fields in laser cladded coatings [J]. Appl. Surf. Sci., 2007, 254: 921
doi: 10.1016/j.apsusc.2007.08.014
|
50 |
Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
|
51 |
Amirabdollahian S, Deirmina F, Harris L, et al. Towards controlling intrinsic heat treatment of maraging steel during laser directed energy deposition [J]. Scr. Mater., 2021, 201: 113973
doi: 10.1016/j.scriptamat.2021.113973
|
52 |
Nezhadfar P D, Shamsaei N, Phan N. Enhancing ductility and fatigue strength of additively manufactured metallic materials by preheating the build platform [J]. Fatigue Fract. Eng. Mater. Struct., 2021, 44: 257
doi: 10.1111/ffe.13372
|
53 |
Luo X P, Zhao M H, Li J Y, et al. Numerical study on thermodynamic behavior during selective laser melting of 24CrNiMo alloy steel [J]. Materials, 2020, 13: 45
doi: 10.3390/ma13010045
|
54 |
Zumofen L, Kirchheim A, Dennig H J. Laser powder bed fusion of 30CrNiMo8 steel for quenching and tempering: Examination of the processability and mechanical properties [J]. Prog. Addit. Manuf., 2020, 5: 75
doi: 10.1007/s40964-020-00121-x
|
55 |
Li W, Liu J, Zhou Y, et al. Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting [J]. Scr. Mater., 2016, 118: 13
doi: 10.1016/j.scriptamat.2016.02.022
|
56 |
Xue A T, Lin X, Wang L L, et al. Heat-affected coarsening of β grain in titanium alloy during laser directed energy deposition [J]. Scr. Mater., 2021, 205: 114180
doi: 10.1016/j.scriptamat.2021.114180
|
57 |
Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel [J]. Phys. Procedia, 2011, 12: 255
doi: 10.1016/j.phpro.2011.03.033
|
58 |
Kempen K, Vrancken B, Buls S, et al. Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating [J]. J. Manuf. Sci. Eng., 2014, 136: 061026
|
59 |
Chen H Y, Gu D D, Dai D H, et al. A novel approach to direct preparation of complete lath martensite microstructure in tool steel by selective laser melting [J]. Mater. Lett., 2018, 227: 128
doi: 10.1016/j.matlet.2018.05.042
|
60 |
Zhang J, Yu M J, Li Z Y, et al. The effect of laser energy density on the microstructure, residual stress and phase composition of H13 steel treated by laser surface melting [J]. J. Alloys Compd., 2021, 856: 158168
doi: 10.1016/j.jallcom.2020.158168
|
61 |
Chen X, Qiu C L. In-situ development of a sandwich microstructure with enhanced ductility by laser reheating of a laser melted titanium alloy [J]. Sci. Rep., 2020, 10: 15870
doi: 10.1038/s41598-020-72627-x
pmid: 32985532
|
62 |
Jing G Y, Huang W P, Yang H H, et al. Microstructural evolution and mechanical properties of 300M steel produced by low and high power selective laser melting [J]. J. Mater. Sci. Technol., 2020, 48: 44
doi: 10.1016/j.jmst.2019.12.020
|
63 |
Tan C L, Chew Y W, Weng F, et al. Superior strength-ductility in laser aided additive manufactured high-strength steel by combination of intrinsic tempering and heat treatment [J]. Virtual Phys. Prototyping, 2021, 16: 460
doi: 10.1080/17452759.2021.1964268
|
64 |
Kürnsteiner P, Wilms M B, Weisheit A, et al. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition [J]. Acta Mater., 2017, 129: 52
doi: 10.1016/j.actamat.2017.02.069
|
65 |
Jägle E A, Sheng Z D, Wu L, et al. Precipitation reactions in age-hardenable alloys during laser additive manufacturing [J]. JOM, 2016, 68: 943
doi: 10.1007/s11837-015-1764-2
|
66 |
Barriobero-Vila P, Gussone J, Haubrich J, et al. Inducing stable α + β microstructures during selective laser melting of Ti-6Al-4V using intensified intrinsic heat treatments [J]. Materials, 2017, 10: 268
doi: 10.3390/ma10030268
|
67 |
Ma Y. The microstructure transformation of selective laser melting processed TC4 at different heights [J]. Appl. Laser, 2020, 40(5):790
|
|
马 尧. SLM成形TC4钛合金不同高度处微观组织演变 [J]. 应用激光, 2020, 40(5): 790
|
68 |
Yan J J, Zheng D L, Li H X, et al. Selective laser melting of H13: Microstructure and residual stress [J]. J. Mater. Sci., 2017, 52: 12476
doi: 10.1007/s10853-017-1380-3
|
69 |
Damon J, Koch R, Kaiser D, et al. Process development and impact of intrinsic heat treatment on the mechanical performance of selective laser melted AISI 4140 [J]. Addit. Manuf., 2019, 28: 275
|
70 |
Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
|
|
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
|
71 |
Mukherjee T, DebRoy T. A digital twin for rapid qualification of 3D printed metallic components [J]. Appl. Mater. Today, 2019, 14: 59
doi: 10.1016/j.apmt.2018.11.003
|
72 |
Bobbio L D, Otis R A, Borgonia J P, et al. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: Experimental characterization and thermodynamic calculations [J]. Acta Mater., 2017, 127: 133
doi: 10.1016/j.actamat.2016.12.070
|
73 |
DebRoy T, Mukherjee T, Wei H L, et al. Metallurgy, mechanistic models and machine learning in metal printing [J]. Nat. Rev. Mater., 2021, 6: 48
doi: 10.1038/s41578-020-00236-1
|
74 |
Dutta B, Froes F. Additive manufacturing technology [A]. Additive Manufacturing of Titanium Alloys [M]. Amsterdam: Elsevier, 2016: 25
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|