Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold
LIU Zhongqiu1,2, LI Baokuan1(), XIAO Lijun2, GAN Yong2
1.School of Metallurgy, Northeastern University, Shenyang 110819, China 2.Central Iron and Steel Research Institute, Beijing 100081, China
Cite this article:
LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold. Acta Metall Sin, 2022, 58(10): 1236-1252.
The cleanliness, homogenization, and refinement of the high-quality steel are highly dependent on the high-temperature melt multiphase flow in the continuous casting mold. The high-temperature melt multiphase flow is unsteady-state turbulence that is coupled with heat transfer, mass transfer, phase change, chemical reaction, and electromagnetic effect, forming an extremely complex, unsteady, nonlinear, and nonequilibrium multiphysical fields, where various physical quantities are nearly impossible to on-line measure through on-site testing. With the similarity of flow and solidification processes ensured, both the physical experiment and the numerical simulation of multiscale transport phenomenon have emerged as the prime choices to study the formation mechanism of various defects in continuous casting slabs. However, in various forms, the conventional hydrodynamic problems, such as the high-temperature melt multiphase flow in various metallurgical reactors, is characterized by a considerable change in physical properties, complex constitutive equations, diverse influencing factors of phase interface, and large gradient of physical quantities near the boundary. In addition, in the multiphysical fields inside continuous casting mold, there exists complex and variable multiscale interface phenomena like large-scale interface deformation of the continuous phase, transport of discrete phase particle, and transition between continuous and discrete phase, as well as the multiscale turbulent vortex structure, which poses a great challenge to modeling of high-temperature melt multiphase flow. Compared with the single-phase flow, the multiphase flow is characterized by the topological variation of the phase interface. In this paper, the research progress on modeling the high-temperature melt multiphase flow in the continuous casting mold is discussed from the following four perspectives: the scale distribution of discrete flow interface, cross-scale phenomenon of mixed flow interface, multiscale phenomenon of solidification interface, and role of turbulence in revealing the multiscale phase interface structure. Finally, the potential study direction in the future is considered.
Fund: National Natural Science Foundation of China(51974071);National Natural Science Foundation of China(52171031);China Postdoctoral Science Foundation(2020M680475)
About author: LI Baokuan, professor, Tel: 13840054268, E-mail: libk@smm.neu.edu.cn
Fig.1 Multiphase, multi-physics, and multi-scale characteristics in the mold (SEN—submerged entry nozzle)
Fig.2 Trajectories of bubbles with different sizes[25] (a) 1-1.5 mm (b) 1.5-2 mm (c) 2-2.5 mm (d) > 2.5 mm
Fig.3 Spatial distributions of bubbles and inclusions in actual slab (Dm—bubble size)[12]
Fig.4 Bubbles cluster and bubbles outside cluster (a) macro-distribution of bubbles (b) 0 ms (c) 15 ms (d) 30 ms (e) 40 ms
Fig.5 Locations of captured inclusions on solidified shell[10] (a) 1.5 s (b) 3.0 s (c) 10 s (d) 30 s (e) 100 s
Fig.6 Locations of exposed slag eyes on the top surface of the mold[51] (a) industrial scene (b) numerical prediction (αg—gas volume fraction)
Fig.7 Comparisons of gas void fraction profiles inside the SEN between experiment (a) and MUltiple SIze Group (MUSIG) model (b) and average bubble number density (ABND) model (c) simulations
Fig.8 Vortex slag entrapment phenomenon observed in water model experiment[78] (a) near SEN (b) near the quarter width
Fig.9 Emulsifying phenomenon observed in water model experiment[51] (a) top surface of slag layer (b) wide face of the mold
Fig.10 Vortex slag entrapment phenomenon predicted by numerical simulation[52] (a) interface of slag and steel (b) 20 mm below the slag-steel interface (c) flow field in the mold
Fig.11 Transient dumbbell coalescence process from a bottom view[109] (a) experiment (b) numerical simulation (DPM—discrete phase model, ICM—interface-capturing model)
Fig.12 Evolution of macroscopic solidification structure observed in solidification experiment (a) device for solidification[129] (b) without inner cooler[128] (c) with inner cooler[128]
Fig.13 Relation between ratio of equiaxed zone and initial temperature of steel strip[129] (d0—initial thickness of steel strip, D—diffusion coefficient of solute, —initial temperature of steel strip, R—equiaxed crystal ratio)
Method
Continuity
Momentum equation
Solvable scale
Model
Computation
equation
requirement
DNS
Eddies of all scales
No
Huge
LES
Eddies of large scales
Subgrid scale model
High
RANS
Eddies of average scale
Time-averaged turbulence model
Low
Table 1 Basic equations and characteristics of the three turbulent numerical methods
Fig.14 Characteristics of molten steel-argon gas two-phase transient flow field in the mold[50] Color online (a) RANS (b) LES (c) comparison of numerical simulation with experiment (—horizontal average velocity, —vertical average velocity, Qw—water-carrying capacity, Qg—gas flow rate, k—turbulent kinetic energy, ε—turbulent dissipation rate, SST—shear stress transport, RSM—Reynolds stress model)
1
Li B K, Liu Z Q. Computational Fluid Dynamics in Steelmaking Processes [M]. Beijing: Metallurgical Industry Press, 2016: 1
李宝宽, 刘中秋. 炼钢中的计算流体力学 [M]. 北京: 冶金工业出版社, 2016: 1
2
Li B K, Okane T, Umeda T. Modeling of molten metal flow in a continuous casting process considering the effects of argon gas injection and static magnetic-field application [J]. Metall. Mater. Trans., 2000, 31B: 1491
3
Li B K, Okane T, Umeda T. Modeling of biased flow phenomena associated with the effects of static magnetic-field application and argon gas injection in slab continuous casting of steel [J]. Metall. Mater. Trans., 2001, 32B: 1053
4
Li B K, Tsukihashi F. Numerical estimation of the effect of the magnetic field application on the motion of inclusion in continuous casting of steel [J]. ISIJ Int., 2003, 43: 923
doi: 10.2355/isijinternational.43.923
5
Li B K, Huo H F, Luan Y J. Effects of magnetic field and argon gas injection on the inclusion motion in flow control mold [J]. Acta Metall. Sin., 2003, 39: 932
Li B K, Dai F Y, Qi F S, et al. Flow field and concentration field of alloying addition in clad steel continuous casting mold using long and short nozzles [J]. Acta Metall. Sin., 2010, 46: 736
doi: 10.3724/SP.J.1037.2010.00736
Gan Y, Tang H W, Qiu S T. Function of continuous cast steel in steel production process and brief introduction of modern continuous casting technology [J]. Sci. China, 2008, 38E: 1384
Liu Z Q, Li B K, Zhang L, et al. Analysis of transient transport and entrapment of particle in continuous casting mold [J]. ISIJ Int., 2014, 54: 2324
doi: 10.2355/isijinternational.54.2324
10
Liu Z Q, Li B K. Transient motion of inclusion cluster in vertical-bending continuous casting caster considering heat transfer and solidification [J]. Powder Technol., 2016, 287: 315
doi: 10.1016/j.powtec.2015.10.025
11
Liu Z Q, Li B K. Effect of vertical length on asymmetric flow and inclusion transport in vertical-bending continuous caster [J]. Powder Technol., 2018, 323: 403
doi: 10.1016/j.powtec.2017.10.034
12
Liu Z Q, Li B K, Wu M H, et al. An experimental benchmark of non-metallic inclusion distribution inside a heavy continuous-casting slab [J]. Metall. Mater. Trans., 2019, 50A: 1370
13
Miki Y, Takeuchi S. Internal defects of continuous casting slabs caused by asymmetric unbalanced steel flow in mold [J]. ISIJ Int., 2003, 43: 1548
doi: 10.2355/isijinternational.43.1548
14
Zhang L F, Thomas B G. State of the art in evaluation and control of steel cleanliness [J]. ISIJ Int., 2003, 43: 271
doi: 10.2355/isijinternational.43.271
15
Zhou Y H, Hu Z Q, Jie W Q. Solidification Technology [M]. Beijing: China Machine Press, 1998: 1
周尧和, 胡壮麒, 介万奇. 凝固技术 [M]. 北京: 机械工业出版社, 1998: 1
16
Li J, Xia M X, Hu Q D, et al. Solutions in improving homogeneities of heavy ingots [J]. Acta Metall. Sin., 2018, 54: 773
doi: 10.11900/0412.1961.2017.00525
Zhang W W, Ke P, Yang C X, et al. Progress of computability of multi-scale interface problems in gas-liquid two-phase flow [J]. CIESC J, 2014, 65: 4645
Zheng S G, Zhu M Y. Study on mechanism of large bubble formation in slab continuous casting mould with argon blowing [J]. Steel Res. Int., 2008, 79: 918
doi: 10.1002/srin.200806221
19
Wu S Z, Li Z Z. Research of gas-containing ratio and argon bubbles distribution law in ultra-wide slab continuous casting mold [J]. Metal. Int., 2011, 16: 5
20
Srinivas P S, Singh A, Korath J M, et al. Multiphase vortex flow patterns in slab caster mold: Experimental study [J]. ISIJ Int., 2017, 57: 1553
doi: 10.2355/isijinternational.ISIJINT-2017-062
21
Srinivas P S, Korath J M, Jana A K. Multiphase vortex flow patterns in slab caster mould: Insights of air vortex interaction and plant data analysis [J]. Can. Metall. Q., 2020, 59: 270
doi: 10.1080/00084433.2020.1732689
22
Ramos-Banderas A, Morales R D, Sánchez-Pérez R, et al. Dynamics of two-phase downwards flows in submerged entry nozzles and its influence on the two-phase flow in the mold [J]. Int. J. Multiphase Flow, 2005, 31: 643
doi: 10.1016/j.ijmultiphaseflow.2005.01.010
23
Lee G G, Thomas B G, Kim S H. Effect of refractory properties on initial bubble formation in continuous-casting nozzles [J]. Met. Mater. Int., 2010, 16: 501
doi: 10.1007/s12540-010-0601-y
24
Cho S M, Thomas B G, Kim S H. Bubble behavior and size distributions in stopper-rod nozzle and mold during continuous casting of steel slabs [J]. ISIJ Int., 2018, 58: 1443
doi: 10.2355/isijinternational.ISIJINT-2018-096
25
Wu Y D, Liu Z Q, Wang F, et al. Experimental investigation of trajectories, velocities and size distributions of bubbles in a continuous-casting mold [J]. Powder Technol., 2021, 387: 325
doi: 10.1016/j.powtec.2021.04.015
26
Chen Z H, Wang E G, Zhang X W, et al. Study on the behaviour of bubbles in a continuous casting mold with Ar injection and traveling magnetic field [J]. Acta Metall. Sin., 2012, 48: 951
doi: 10.3724/SP.J.1037.2011.00792
Timmel K, Eckert S, Gerbeth G, et al. Experimental modeling of the continuous casting process of steel using low melting point metal alloys—The LIMMCAST program [J]. ISIJ Int., 2010, 50: 1134
doi: 10.2355/isijinternational.50.1134
28
Timmel K, Shevchenko N, Röder M, et al. Visualization of liquid metal two-phase flows in a physical model of the continuous casting process of steel [J]. Metall. Mater. Trans., 2015, 46B: 700
29
Ren Z M, Zhang Z Q, Deng K, et al. Experimental investigation of fluid flow in CC mold with electromagnetic filed [J]. J. Iron Steel Res. Int., 2011, 18(S2): 227
30
Zhang H H, Wang W L, Zhou D, et al. A study for initial solidification of Sn-Pb alloy during continuous casting: Part I. The development of the technique [J]. Metall. Mater. Trans., 2014, 45B: 1038
31
Zhou D, Wang W L, Zhang H H, et al. A study for initial solidification of Sn-Pb alloy during continuous casting: Part II. Effects of casting parameters on initial solidification and shell surface [J]. Metall. Mater. Trans., 2014, 45B: 1048
32
Miyake T, Morishita M, Nakata H, et al. Influence of sulphur content and molten steel flow on entrapment of bubbles to solid/liquid interface [J]. ISIJ Int., 2006, 46: 1817
doi: 10.2355/isijinternational.46.1817
33
Damen W, Abbel G. Argon bubbles in slabs, a non-homogeneous distribution [J]. Rev. Metall., 1997, 94: 745
doi: 10.1051/metal/199794060745
34
Naveau P, Visser H H, Galpin J M, et al. An investigation on the mechanism of gas bubbles/inclusions entrapment in the solidified steel shell [A]. 5th European Continuous Casting Conference [C]. Nice, France, June 20-22, 2005
35
Thomas B G, Yuan Q, Mahmood S, et al. Transport and entrapment of particles in steel continuous casting [J]. Metall. Mater. Trans., 2014, 45B: 22
36
Cho S M, Thomas B G, Kim S H. Transient two-phase flow in slide-gate nozzle and mold of continuous steel slab casting with and without double-ruler electro-magnetic braking [J]. Metall. Mater. Trans., 2016, 47B: 3080
37
Pfeiler C, Thomas B G, Wu M, et al. Solidification and particle entrapment during continuous casting of steel [J]. Steel Res. Int., 2008, 79: 599
doi: 10.1002/srin.200806172
38
Chen W, Zhang L F. Effects of interphase forces on multiphase flow and bubble distribution in continuous casting strands [J]. Metall. Mater. Trans., 2021, 52B: 528
39
Zhang L F, Wang Y F. Modeling the entrapment of nonmetallic inclusions in steel continuous-casting billets [J]. JOM, 2012, 64: 1063
doi: 10.1007/s11837-012-0421-2
40
Liu Z Q, Li B K, Jiang M F. Transient asymmetric flow and bubble transport inside a slab continuous-casting mold [J]. Metall. Mater. Trans., 2014, 45B: 675
41
Liu Z Q, Li Z M, Li B K, et al. Large eddy simulation of transient flow, solidification, and particle transport processes in continuous-casting mold [J]. JOM, 2014, 66: 1184
doi: 10.1007/s11837-014-1010-3
42
Liu C L, Luo Z G, Zhang T, et al. Mathematical modeling of multi-sized argon gas bubbles motion and its impact on melt flow in continuous casting mold of steel [J]. J. Iron Steel Res. Int., 2014, 21: 403
doi: 10.1016/S1006-706X(14)60062-5
43
Yin Y B, Zhang J M, Ma H T, et al. Large eddy simulation of transient flow, particle transport, and entrapment in slab mold with double-ruler electromagnetic braking [J]. Steel Res. Int., 2021, 92: 2000582
doi: 10.1002/srin.202000582
44
Zhang T, Luo Z G, Zhou H, et al. Analysis of two-phase flow and bubbles behavior in a continuous casting mold using a mathematical model considering the interaction of bubbles [J]. ISIJ Int., 2016, 56: 116
doi: 10.2355/isijinternational.ISIJINT-2015-456
45
Yang H, Vanka S P, Thomas B G. A hybrid Eulerian-Eulerian discrete-phase model of turbulent bubbly flow [J]. J. Fluids Eng., 2018, 140: 101202
doi: 10.1115/1.4039793
46
Sarkar S, Singh V, Ajmani S K, et al. Effect of argon injection in meniscus flow and turbulence intensity distribution in continuous slab casting mold under the influence of double ruler magnetic field [J]. ISIJ Int., 2018, 58: 68
doi: 10.2355/isijinternational.ISIJINT-2017-448
47
Bai H, Thomas B G. Turbulent flow of liquid steel and argon bubbles in slide-gate tundish nozzles: Part I. Model development and validation [J]. Metall. Mater. Trans., 2001, 32B: 253
48
Bai H, Thomas B G. Turbulent flow of liquid steel and argon bubbles in slide-gate tundish nozzles: Part II. Effect of operation conditions and nozzle design [J]. Metall. Mater. Trans., 2001, 32B: 269
49
Kubo N, Ishii T, Kubota J, et al. Two-phase flow numerical simulation of molten steel and argon gas in a continuous casting mold [J]. ISIJ Int., 2002, 42: 1251
doi: 10.2355/isijinternational.42.1251
50
Liu Z Q, Li B K. Large-eddy simulation of transient horizontal gas-liquid flow in continuous casting using dynamic subgrid-scale model [J]. Metall. Mater. Trans., 2017, 48B: 1833
51
Liu Z Q, Li B K, Vakhrushev A, et al. Physical and numerical modeling of exposed slag eye in continuous casting mold using Euler-Euler approach [J]. Steel Res. Int., 2019, 90: 1800117
doi: 10.1002/srin.201800117
52
Liu Z Q, Sun Z B, Li B K. Modeling of quasi-four-phase flow in continuous casting mold using hybrid Eulerian and Lagrangian approach [J]. Metall. Mater. Trans., 2017, 48B: 1248
53
Liu Z Q, Li B K, Jiang M F, et al. Euler-Euler-Lagrangian modeling for two-phase flow and particle transport in continuous casting mold [J]. ISIJ Int., 2014, 54: 1314
doi: 10.2355/isijinternational.54.1314
54
Liu Z Q, Li L M, Qi F S, et al. Population balance modeling of polydispersed bubbly flow in continuous-casting using multiple-size-group approach [J]. Metall. Mater. Trans., 2015, 46B: 406
55
Liu Z Q, Qi F S, Li B K, et al. Multiple size group modeling of polydispersed bubbly flow in the mold: An analysis of turbulence and interfacial force models [J]. Metall. Mater. Trans., 2015, 46B: 933
56
Li L M, Liu Z Q, Li B K. Modelling of bubble aggregation, breakage and transport in slab continuous casting mold [J]. J. Iron Steel Res. Int., 2015, 22: 30
57
Liu Z Q, Qi F S, Li B K, et al. Modeling of bubble behaviors and size distribution in a slab continuous casting mold [J]. Int. J. Multiphase Flow, 2016, 79: 190
doi: 10.1016/j.ijmultiphaseflow.2015.07.009
58
Wu Y D, Liu Z Q, Li B K, et al. Numerical simulation of multi-size bubbly flow in a continuous casting mold using population balance model [J]. Powder Technol., 2022, 396: 224
doi: 10.1016/j.powtec.2021.10.055
59
Liu Z Q, Li B K, Qi F S, et al. Population balance modeling of polydispersed bubbly flow in continuous casting using average bubble number density approach [J]. Powder Technol., 2017, 319: 139
doi: 10.1016/j.powtec.2017.06.034
60
Prince M J, Blanch H W. Bubble coalescence and break-up in air-sparged bubble columns [J]. AIChE J., 1990, 36: 1485
doi: 10.1002/aic.690361004
61
Luo H A, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions [J]. AIChE J., 1996, 42: 1225
doi: 10.1002/aic.690420505
62
Wu Q, Kim S, Ishii M, et al. One-group interfacial area transport in vertical bubbly flow [J]. Int. J. Heat Mass Transfer, 1998, 41: 1103
doi: 10.1016/S0017-9310(97)00167-1
63
Hibiki T, Ishii M. Two-group interfacial area transport equations at bubbly-to-slug flow transition [J]. Nucl. Eng. Des., 2000, 202: 39
doi: 10.1016/S0029-5493(00)00286-7
64
Teshima T, Kubota J, Suzuki M, et al. Influence of casting conditions on molten steel flow in continuous casting mold at high speed casting of slabs [J]. Tetsu Hagané, 1993, 79(5): 40
Gupta D, Lahiri A K. Cold model study of the surface profile in a continuous slab casting mold: Effect of second phase [J]. Metall. Mater. Trans., 1994, 27B: 695
66
Kumar D S, Rajendra T, Sarkar A, et al. Slab quality improvement by controlling mould fluid flow [J]. Ironmaking Steelmaking, 2007, 34: 185
doi: 10.1179/174328107X155330
67
Zhang L F, Yang S B, Cai K K, et al. Investigation of fluid flow and steel cleanliness in the continuous casting strand [J]. Metall. Mater. Trans., 2007, 38B: 63
68
Iguchi M, Yoshida J, Shimizu T, et al. Model study on the entrapment of mold powder into molten steel [J]. ISIJ Int., 2000, 40: 685
doi: 10.2355/isijinternational.40.685
69
Li B K, Li D H. Water model observation and numerical simu-lation of vortexing flow at molten steel surface in continuous casting mold [J]. Acta Metall. Sin., 2002, 38: 315
Mills K C, Fox A B. The role of mould fluxes in continuous casting—So simple yet so complex [J]. ISIJ Int., 2003, 43: 1479
doi: 10.2355/isijinternational.43.1479
71
Zhang S J, Zhu M Y, Zhang Y L, et al. Study on mechanism of entrapment in slab continuous casting mould with high casting speed and argon blowing [J]. Acta Metall. Sin., 2006, 42: 1087
Hibbeler L C, Thomas B G. Mold slag entrainment mechanisms in continuous casting molds [J]. Iron Steel Technol., 2013, 10: 121
73
Hagemann R, Schwarze R, Heller H P, et al. Model investigations on the stability of the steel-slag interface in continuous-casting process [J]. Metall. Mater. Trans., 2013, 44B: 80
74
Zhang L, Li Y, Wang Q, et al. Prediction model for steel/slag interfacial instability in continuous casting process [J]. Ironmaking Steelmaking, 2015, 42: 705
doi: 10.1179/1743281215Y.0000000023
75
Asai S. Fluid flow and mass transfer in a refining process by use of stirring [A]. Proceedings of the 100 and 101 Nishiyama Memorial Lecture [C]. Tokyo: The Iron and Steel Institute of Japan, 1984: 65
76
Harman J M, Cramb A W. A study of the effect of fluid physical properties upon droplet emulsification [A]. 79th Steelmaking Conference [C]. Pittsburgh, PA: The Iron and Steel Society, 1996, 55: 773
77
Tozawa H, Idogawa A, Nakato H, et al. Investigation of periodical change of molten steel flow and entrainment of mold powder in continuous casting mold [J]. CAMP-ISIJ, 1996, 9: 604
Liu Z Q, Qi F S, Li B K, et al. Vortex flow pattern in a slab continuous casting mold with argon gas injection [J]. J. Iron Steel Res. Int., 2014, 21: 1081
doi: 10.1016/S1006-706X(14)60187-4
79
Bai H, Thomas B G. Effects of clogging, argon injection, and continuous casting conditions on flow and air aspiration in submerged entry nozzles [J]. Metall. Mater. Trans., 2001, 32B: 707
80
Li B K, Tsukihashi F. Vortexing flow patterns in a water model of slab continuous casting mold [J]. ISIJ Int., 2005, 45: 30
doi: 10.2355/isijinternational.45.30
81
Li B K, Tsukihashi F. Effects of electromagnetic brake on vortex flows in thin slab continuous casting mold [J]. ISIJ Int., 2006, 46: 1833
doi: 10.2355/isijinternational.46.1833
82
Mahmood S. Efficient modeling of flow asymmetries and particle entrapment in nozzle and mold during continuous casting of steel slabs [D]. Urbana: University of Illinois at Urbana-Champaign, 2006
83
Zhang L F, Wang Y F, Zuo X J. Flow transport and inclusion motion in steel continuous-casting mold under submerged entry nozzle clogging condition [J]. Metall. Mater. Trans., 2008, 39B: 534
84
Lee G G, Shin H J, Thomas B G, et al. Asymmetric multi-phase fluid flow and particle entrapment in a continuous casting mold [A]. AISTech 2008 [C]. Pittsburgh: AISTech, 2008: 63
85
Cho S M, Lee G G, Kim S H, et al. Effect of stopper-rod misalignment on asymmetric flow and vortex formation in steel slab casting [A]. Proceedings of Jim Evans Honorary Symposium-Held During TMS 2010 Annual Meeting and Exhibition [C]. Washington, February 14- 18, 2010: 71
86
Chaudhary R, Lee G G, Thomas B G, et al. Effect of stopper-rod misalignment on fluid flow in continuous casting of steel [J]. Metall. Mater. Trans., 2011, 42B: 300
87
Yamashita S, Iguchi M. Mechanism of mold powder entrapment caused by large argon bubble in continuous casting mold [J]. ISIJ Int., 2001, 41: 1529
doi: 10.2355/isijinternational.41.1529
88
Iguchi M, Sumida Y, Okada R, et al. Evaluation of critical gas flow rate for the entrapment of slag using a water model [J]. ISIJ Int., 1994, 34: 164
doi: 10.2355/isijinternational.34.164
89
Chung Y, Cramb A W. Dynamic and equilibrium interfacial phenomena in liquid steel-slag systems [J]. Metall. Mater. Trans., 2000, 31B: 957
90
Han Z J, Holappa L. Bubble bursting phenomenon in gas/metal/slag systems [J]. Metall. Mater. Trans., 2003, 34B: 525
91
Emling W H, Waugaman T A, Feldbauer S L, et al. Subsurface mold slag entrainment in ultra low carbon steels [A]. 77th Steelmaking Conference [C]. Chicago, IL: The Iron and Steel Society, 1994, 77: 371
92
Wang Z, Mukai K, Ma Z Y, et al. Influence of injected Ar gas on the involvement of the mold powder under different wettabilities between porous refractory and molten steel [J]. ISIJ Int., 1999, 39: 795
doi: 10.2355/isijinternational.39.795
93
Hahn I, Neuschütz D. Ejection of steel and slag droplets from gas stirred steel melts [J]. Ironmaking Steelmaking, 2002, 29: 219
doi: 10.1179/030192302225004115
94
Yoshida J, Iguchi M, Yokoya S. Water model experiment on mold powder entrapment around the exit of immersion nozzle in continuous casting mold [J]. Tetsu Hagané, 2001, 87: 9
Yuan Z F, Huang W L, Mukai K. Local corrosion of magnesia-chrome refractories driven by Marangoni convection at the slag-metal interface [J]. J. Colloid Interface Sci., 2002, 253: 211
doi: 10.1006/jcis.2002.8504
96
Zhou L J, Wang W L, Liu R, et al. Computational modeling of temperature, flow, and crystallization of mold slag during double hot thermocouple technique experiments [J]. Metall. Mater. Trans., 2013, 44B: 1264
97
Real-Ramirez C A, Gonzalez-Trejo J I. Analysis of three-dimensional vortexes below the free surface in a continuous casting mold [J]. Int. J. Miner. Metall. Mater., 2011, 18: 397
doi: 10.1007/s12613-011-0453-6
98
Lopez P E R, Jalali P N, Björkvall J, et al. Recent developments of a numerical model for continuous casting of steel: Model theory, setup and comparison to physical modelling with liquid metal [J]. ISIJ Int., 2014, 54: 342
doi: 10.2355/isijinternational.54.342
99
Zhao P, Li Q, Kuang S B, et al. Mathematical modeling of liquid slag layer fluctuation and slag droplets entrainment in a continuous casting mold based on VOF-LES method [J]. High Temp. Mater. Processes, 2017, 36: 551
doi: 10.1515/htmp-2016-0143
100
Li X L, Li B K, Liu Z Q, et al. Large eddy simulation of electromagnetic three-phase flow in a round bloom considering solidified shell [J]. Steel Res. Int., 2019, 90: 1800133
doi: 10.1002/srin.201800133
101
Wang Y, Yang S F, Wang F, et al. Optimization on reducing slag entrapment in 150 × 1270 mm slab continuous casting mold [J]. Materials, 2019, 12: 1774
doi: 10.3390/ma12111774
102
Deng A Y, Xu L, Wang E G, et al. Numerical analysis of fluctuation behavior of steel/slag interface in continuous casting mold with static magnetic field [J]. J. Iron Steel Res. Int., 2014, 21: 809
doi: 10.1016/S1006-706X(14)60146-1
103
Jowsa J, Bielnicki M, Cwudziński A. Numerical modelling of metal/flux interface in a continuous casting mould [J]. Arch. Metall. Mater., 2015, 60: 2905
doi: 10.1515/amm-2015-0464
104
Zhao P, Zhou L H. Mathematical modelling of slag entrainment and entrained droplets in a continuous casting mould [J]. Ironmaking Steelmaking, 2019, 46: 886
doi: 10.1080/03019233.2019.1604613
105
Chen W, Zhang L F, Ren Q, et al. Large eddy simulation on four-phase flow and slag entrainment in the slab continuous casting mold [J]. Metall. Mater. Trans., 2022, 53B: 1446
106
Li L M, Li B K, Liu Z Q. Modeling of gas-steel-slag three-phase flow in ladle metallurgy: Part II. Multi-scale mathematical model [J]. ISIJ Int., 2017, 57: 1980
doi: 10.2355/isijinternational.ISIJINT-2017-069
107
Li X L, Li B K, Liu Z Q, et al. Large eddy simulation of multi-phase flow and slag entrapment in a continuous casting mold [J]. Metals, 2019, 9: 7
doi: 10.3390/met9010007
108
Li X L, Li B K, Liu Z Q, et al. Evaluation of slag entrapment in continuous casting mold based on the LES-VOF-DPM coupled model [J]. Metall. Mater. Trans., 2021, 52B: 3246
109
Sun M J, Li B K, Liu Z Q, et al. Experimental and numerical investigations on transient multiscale bubble behaviors in CuSO4 aqueous solution electrolysis cell [J]. Chem. Eng. J., 2022, 428: 131182
doi: 10.1016/j.cej.2021.131182
110
Tsukamoto K, Abe T, Sunagawa I. In situ observation of crystals growing in high temperature melts or solutions [J]. J. Cryst. Growth, 1983, 63: 215
doi: 10.1016/0022-0248(83)90452-9
111
Jie W Q, Zhou Y H. Modeling study of convection and constitution variation in ingot during solidification [J]. Acta Metall. Sin., 1988, 24: 457
Beckermann C, Viskanta R. Double-diffusive convection during dendritic solidification of a binary mixture [J]. PhysicoChem. Hydrodyn., 1988, 10: 195
113
Chen C F, Chen F L. Experimental study of directional solidification of aqueous ammonium chloride solution [J]. J. Fluid Mech., 1991, 227: 567
doi: 10.1017/S0022112091000253
114
Cao W Z, Poulikakos D. Transient solidification of a binary mixture in an inclined rectangular cavity [J]. J. Thermophys. Heat Transf., 1992, 6: 326
doi: 10.2514/3.363
115
Neilson D G, Incropera F P. Experimental study of unidirectional solidification of aqueous ammonium chloride in a cylindrical mold with and without rotation [J]. Exp. Heat Transfer, 1993, 6: 131
doi: 10.1080/08916159308946450
116
McCay M H, McCay T D, Hopkins J A. The nature and influence of convection on the directional dendritic solidification of a metal alloy analog, NH4Cl, and H2O [J]. Metall. Mater. Trans., 1993, 24B: 669
117
Beckermann C, Wang C Y. Equiaxed dendritic solidification with convection: Part III. Comparisons with NH4Cl-H2O experiments [J]. Metall. Mater. Trans., 1996, 27A: 2784
118
Wang S Y, Lin C X, Ebadian M A. Vortex flow of low concentration NH4Cl-H2O solution during the solidification process [J]. Int. J. Heat Mass Transfer, 1999, 42: 4153
doi: 10.1016/S0017-9310(99)00068-X
119
Wang S Y, Lin C X, Ebadian M A. Study of double-diffusive velocity during the solidification process using particle image velocimetry [J]. Int. J. Heat Mass Transfer, 1999, 42: 4427
doi: 10.1016/S0017-9310(99)00114-3
120
Duggirala R K, Lin C X, Ghenai C. Investigation of double-diffusive convection during the solidification of a binary mixture (NH4Cl-H2O) in a trapezoidal cavity [J]. Exp. Fluids, 2006, 40: 918
doi: 10.1007/s00348-006-0128-7
121
Huang W D, Zhang Y, Wang M, et al. In-situ observation of nucleation on a rough chilling surface in NH4Cl-H2O solution [J]. Trans. Indian Inst. Met., 2009, 62: 489
doi: 10.1007/s12666-009-0086-x
122
Kharicha A, Stefan-Kharicha M, Ludwig A, et al. Simultaneous observation of melt flow and motion of equiaxed crystals during solidification using a dual phase particle image velocimetry technique. Part II: Relative velocities [J]. Metall. Mater. Trans., 2013, 44A: 661
123
Zhou P, Wang M, Lin X, et al. Settling velocity of equiaxed dendrites in a tube [J]. Chin. Phys., 2013, 22B: 018101
124
Kharicha M S, Eck S, Könözsy L, et al. Experimental and numerical investigations of NH4Cl solidification in a mould Part 1: Experimental results [J]. Int. J. Cast Met. Res., 2009, 22: 168
doi: 10.1179/136404609X368000
125
Könözsy L, Eck S, Kharicha M S, et al. Experimental and numerical investigations of NH4Cl solidification in a mould Part 2: Numerical results [J]. Int. J. Cast Met. Res., 2013, 22: 172
doi: 10.1179/136404609X367605
126
Tian L, Bao Y P, Yang J T, et al. Characteristics of flow field during continuous casting solidifying process [J]. Iron Steel, 2013, 48(10): 36
Li X, Fautrelle Y, Ren Z M. Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field [J]. Acta Mater., 2007, 55: 3803
doi: 10.1016/j.actamat.2007.02.031
128
Niu R, Li B K, Liu Z Q, et al. Experimental investigation of solidification in the cast mold with a consumable cooler introduced inside [J]. Metals, 2019, 9: 55
doi: 10.3390/met9010055
129
Liu Z Q, Niu R, Wu Y D, et al. Physical and numerical simulation of mixed columnar-equiaxed solidification during cold strip feeding in continuous casting [J]. Int. J. Heat Mass Transfer, 2021, 173: 121237
doi: 10.1016/j.ijheatmasstransfer.2021.121237
130
Flemings M C, Nereo G E. Macrosegregation: Part I [J]. Trans. Metall. Soc. AIME, 1967, 239: 1449
131
Bennon W D, Incropera F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation [J]. Int. J. Heat Mass Transfer, 1987, 30: 2161
doi: 10.1016/0017-9310(87)90094-9
132
Li L M, Liu Z Q, Li B K. Fluid flow and solute transport in the solidifying process of large steel ingots with top heating [A]. Proceedings of International Symposium on Liquid Metal Processing and Casting [C]. Leoben, Austria: The Minerals, Metals, and Materials Society, 2015
133
Ni J, Beckermann C. A volume-averaged two-phase model for transport phenomena during solidification [J]. Metall. Mater. Trans., 1991, 22B: 349
134
Li W S, Shen H F, Liu B C. Numerical simulation of macrosegregation in steel ingots using a two-phase model [J]. Int. J. Miner., Metall. Mater., 2012, 19: 787
135
Wu M H, Ludwig A. A three-phase model for mixed columnar-equiaxed solidification [J]. Metall. Mater. Trans., 2006, 37A: 1613
136
Wu M, Fjeld A, Ludwig A. Modelling mixed columnar-equiaxed solidification with melt convection and grain sedimentation-Part I: Model description [J]. Comput. Mater. Sci., 2010, 50: 32
doi: 10.1016/j.commatsci.2010.07.005
137
Zhu M F, Hong C P, Stefanescu D M, et al. Computational modeling of microstructure evolution in solidification of aluminum alloys [J]. Metall. Mater. Trans., 2007, 38B: 517
138
Yin H, Felicelli S D, Wang L. Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods [J]. Acta Mater., 2011, 59: 3124
doi: 10.1016/j.actamat.2011.01.052
139
Chen R, Xu Q Y, Liu B C. A modified cellular automaton model for the quantitative prediction of equiaxed and columnar dendritic growth [J]. J. Mater. Sci. Technol., 2014, 30: 1311
doi: 10.1016/j.jmst.2014.06.006
140
Li B K, Wang Q, Wang F, et al. A coupled cellular automaton-finite-element mathematical model for the multiscale phenomena of electroslag remelting H13 die steel ingot [J]. JOM, 2014, 66: 1153
doi: 10.1007/s11837-014-0979-y
141
Wang Q, Yan H G, Wang F, et al. Impact of electromagnetic stirring on grain structure of electroslag remelting ingot [J]. JOM, 2015, 67: 1821
doi: 10.1007/s11837-015-1479-4
142
Niu R, Li B K, Liu Z Q, et al. Melting of moving strip during steel strip feeding in continuous casting process [J]. Steel Res. Int., 2018, 89: 1700407
doi: 10.1002/srin.201700407
143
Niu R, Li B K, Liu Z Q, et al. Effect of strip feeding into mold on fluid flow and heat transfer in continuous casting process [J]. J. Iron Steel Res. Int., 2020, 27: 295
doi: 10.1007/s42243-019-00341-8
144
Thomas B G, Mika L J, Najjar F M. Simulation of fluid flow inside a continuous slab-casting machine [J]. Metall. Mater. Trans., 1990, 21B: 387
145
Anagnostopoulos J, Bergeles G. Three-dimensional modeling of the flow and the interface surface in a continuous casting mold model [J]. Metall. Mater. Trans., 1999, 30B: 1095
146
Li B K, Tsukihashi F. Effect of static magnetic field application on the mass transfer in sequence slab continuous casting process [J]. ISIJ Int., 2001, 41: 844
doi: 10.2355/isijinternational.41.844
147
Kwon Y, Zhang J, Lee H G. Water model and CFD studies of bubble dispersion and inclusions removal in continuous casting mold of steel [J]. ISIJ Int., 2006, 46: 257
doi: 10.2355/isijinternational.46.257
148
Li B K, Gu M Y, Qi F S, et al. Modeling of three-phase (gas/molten steel/slag) flows and slag layer behavior in an argon gas stirred ladle [J]. Acta Metall. Sin., 2008, 44: 1198
Chaudhary R, Ji C, Thomas B G, et al. Transient turbulent flow in a liquid-metal model of continuous casting, including comparison of six different methods [J]. Metall. Mater. Trans., 2011, 42B: 987
150
Zhang X W, Jin X L, Wang Y, et al. Comparison of standard k-ε model and RSM on three dimensional turbulent flow in the SEN of slab continuous caster controlled by slide gate [J]. ISIJ Int., 2011, 51: 581
doi: 10.2355/isijinternational.51.581
151
Ren B Z, Chen D F, Wang H D, et al. Numerical simulation of fluid flow and solidification in bloom continuous casting mould with electromagnetic stirring [J]. Ironmaking Steelmaking, 2015, 42: 401
doi: 10.1179/1743281214Y.0000000240
152
Liu Z Q, Li B K, Tsukihashi F. Instability and periodicity of asymmetrical flow in a funnel thin slab continuous casting mold [J]. ISIJ Int., 2015, 55: 805
doi: 10.2355/isijinternational.55.805
153
Li B K, Liu Z Q, Qi F S, et al. Large eddy simulation for unsteady turbulent flow in thin slab continuous casting mold [J]. Acta Metall. Sin., 2012, 48: 23
doi: 10.3724/SP.J.1037.2011.00464
Liu Z Q, Qi F S, Li B K, et al. Large eddy simulation for unsteady turbulent field in thin slab continuous casting mold [J]. J. Iron Steel Res. Int., 2011, 18: 243
155
Liu Z Q, Li L M, Li B K. Large eddy simulation of transient flow and inclusions transport in continuous casting mold under different electromagnetic brakes [J]. JOM, 2016, 68: 2180
doi: 10.1007/s11837-016-1988-9
156
Liu Z Q, Vakhrushev A, Wu M H, et al. Effect of an electrically-conducting wall on transient magnetohydrodynamic flow in a continuous-casting mold with an electromagnetic brake [J]. Metals, 2018, 8: 609
doi: 10.3390/met8080609
157
Zhu M Y, Lou W T, Wang W L. Research progress of numerical simulation in steelmaking and continuous casting processes [J]. Acta Metall. Sin., 2018, 54: 131
Wang Q, He M, Zhu X W, et al. Study and development on numerical simulation for application of electromagnetic field technology in metallurgical processes [J]. Acta Metall. Sin., 2018, 54: 228
Liu Z Q, Li B K, Jiang M F, et al. Large eddy simulation of unsteady argon/steel two phase turbulent flow in a continuous casting mold [J]. Acta Metall. Sin., 2013, 49: 513
doi: 10.3724/SP.J.1037.2012.00760
Liu Z Q, Li B K, Jiang M F, et al. Modeling of transient two-phase flow in a continuous casting mold using Euler-Euler large eddy simulation scheme [J]. ISIJ Int., 2013, 53: 484
doi: 10.2355/isijinternational.53.484
162
Liu Z Q, Li B K. Scale-adaptive analysis of Euler-Euler large eddy simulation for laboratory scale dispersed bubbly flows [J]. Chem. Eng. J., 2018, 338: 465
doi: 10.1016/j.cej.2018.01.051
163
Liu Z Q, Vakhrushev A, Wu M H, et al. Scale-adaptive simulation of transient two-phase flow in continuous-casting mold [J]. Metall. Mater. Trans., 2019, 50B: 543
164
Liu Z Q, Wu Y D, Li B K, et al. An assessment on the performance of sub-grid scale models of large eddy simulation in modeling bubbly flows [J]. Powder Technol., 2020, 374: 470
doi: 10.1016/j.powtec.2020.07.055