Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (1): 1-16    DOI: 10.11900/0412.1961.2021.00270
Overview Current Issue | Archive | Adv Search |
Research Progress of Cold Sprayed Ni and Ni-Based Composite Coatings: A Review
LI Wenya1(), ZHANG Zhengmao1, XU Yaxin1, SONG Zhiguo2, YIN Shuo3
1.Shaanxi Key Laboratory of Friction Welding Technologies, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2.Department of Intelligent Equipment, Changzhou College of Information Technology, Changzhou 213164, China
3.Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
Cite this article: 

LI Wenya, ZHANG Zhengmao, XU Yaxin, SONG Zhiguo, YIN Shuo. Research Progress of Cold Sprayed Ni and Ni-Based Composite Coatings: A Review. Acta Metall Sin, 2022, 58(1): 1-16.

Download:  HTML  PDF(3326KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nickel and its alloys have good corrosion and high-temperature oxidation resistance. Cold-spraying (CS) can be applied to Ni and Ni-based composite coatings with good corrosion resistance, due to its advantages of low heat input, dense microstructure, high deposition efficiency, and fast deposition rate, etc. In terms of the open publications, this study summarized the prediction of the critical and particle velocities of Ni-powder particles during CS and then analyzed its deposition characteristics and bonding mechanisms; the property improvement of cold-sprayed Ni and Ni-based composite coatings can be achieved by adjusting the nozzle, powder, and gas parameters; CS combined with laser processing, shot peening, hot rolling, and other technologies can further improve the coating quality; the addition of ceramic particles can increase the strength and corrosion resistance of Ni and Ni-based composite coatings. Finally, several expectations for the widespread application of cold-sprayed Ni and Ni-based composite coatings were presented.

Key words:  cold spraying      nickel      nickel alloy      composite coating      coating property      post treatment     
Received:  02 July 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52061135101);Research Fund of the State Key Laboratory of Solidification Processing (NPU), China(2021-TZ-01);Open Research Fund of the State Key Laboratory of Solidification Processing (NPU), China(SKLSP-202011)
About author:  LI Wenya, professor, Tel: (029)88495226, E-mail: liwy@nwpu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00270     OR     https://www.ams.org.cn/EN/Y2022/V58/I1/1

Fig.1  Schematic diagram of cold spray system and principle[6]
Fig.2  Critical velocities estimated by the equation (Eq.(1)), and the finite element analysis value (FEA) and experimental measurement value (Exp.) of Cu and Al (vcr—critical velocity)[28]
Fig.3  The relationship between critical velocity, particle impact velocity and particle size (νimpact—particle impact velocity, DE—deposition efficiency)[29]
Fig.4  Coefficients of restitution for Al, Ni, Cu, and Zn (The coefficient of restitution is equal to zero above the critical velocity)[36]
MethodValue / (m·s-1)Pros and cons
Numerical simulation576 (Ni/Cu)[28]Poor accuracy;
620-630 (Ni/Ni)[30]convenient;
fast and economical
Deposition efficiency582 (Ni/Cu)[35]Moderate accuracy and experiment cost;
unable to consider the influence of factors such as particle size in detail
Single particle measurement512 (Ni/Cu)[35]The accuracy is the highest;
650-660 (Ni/Ni)[36]the influence of factors such as size and oxide film can be considered
Table 1  The critical velocities of Ni particles measured by different methods and their respective pros and cons[28,30,35,36]
Fig.5  TEM image of cold sprayed Ni coating (Particle-particle boundary is marked with arrow)[48]
Fig.6  EBSD characterizations of Ni coating section (N2; 600oC; 3.0 MPa)[49]
Fig.7  Schematics of dynamic recrystallization process (a-e)[49]
Fig.8  Cross-sectional SEM images of the coating at different powder preheating temperatures[60]
Fig.9  Nitrogen deposition efficiency of different metals at different temperatures[62]
Fig.10  The deposition efficiency of cold sprayed Ni coating varies with the spraying angle (The inset at the upper left shows the set of the spraying angle)[63]
Fig.11  The temperature evolution of a single Ni particle deposited on a Cu substrate with the substrate temperature of 25oC, 200oC, and 400oC[67]
Fig.12  Inverse pole figures (IPFs) (a, c) and image quality (IQ) maps (b, d) of the cross section of cold sprayed Ni coating annealed at 400oC (a, b) and 600oC (c, d) for 1 h[69]
Powder/substratePreparation conditionMain resultRef.

Powder: GA-Ni with an average particle size of 35 μm;

substrate: grit blasted low carbon steel

N2; 2.5 MPa; 600oC

Powder preheating temperature (oC):

300, 400, 500, 600

500oC: (274 ± 19) HV0.1, DE: 95%

600oC: (278 ± 15) HV0.1, DE: 90%

[60]

Powder: 26-44 μm GA-Ni;

substrate: grit blasted low carbon steel

N2; 2.5 MPa; 600oC

He; 1.5 MPa; 600oC

N2: 275 HV0.1, DE: 90%

He: 313 HV0.1, DE: 20%

[31]

Powder: 20-30 nm GA-Ni;

substrate: grit blasted Al

He; 1.7 MPa; 25oC(605 ± 13) HV300g[45]

Powder: GA-Ni and E-Ni with an average particle size of 34 and 31 μm;

substrate: 1Cr18Ni9 stainless steel

N2; 2.8 MPa; 400oC

GA-Ni: undeposited

E-Ni : (605 ± 13) HV0.3, DE:73%

[24]

Powder: E-Ni with an average particle size of 34 μm;

substrate: grit blasted 410 stainless steel

N2; 2.8 MPa;

gas temperature (oC): 350, 400, 450

350oC: 153 HV0.3, DE: 43.4%

400oC: 194 HV0.3, DE: 73.3%

450oC: 201 HV0.3, DE: 79.7%

[63]

Powder: 10-45 μm GA-Ni

substrate: Al; the surface treatments are polish, ground, grit-blast (2.5 μm), and grit-blast (6.5 μm)

Compressed air; 2.5 MPa; 600oC

Bonding strength: 30 MPa;

25 MPa; 15 MPa; 18 MPa

[66]

Powder: 20-40 μm GA-Ni

substrate: grit blasted low carbon steel

N2; 3.6 MPa; 700oC

heat treatment temperature: 600oC

As-sprayed: 238 HV0.3

Heat-treated: 124 HV0.3

[71]

Table 2  Main results of existing literature on cold sprayed Ni coatings[24,31,45,60,63,66,71]
Fig.13  Cross-sectional OM image of 50Ni-50Ti coating[86]
Powder/substrate

Preparation

condition

Main resultRef.

Powder 1: 35-87 μm Ni-coated Fe-9.6%Si-5.4%Al

(FeSiAl 62%)

powder 2: 28-58 μm; FeSiAl 60%;

substrate: stainless steel

Compressed air;

2.6 MPa, 550oC;

2.6 MPa, 620oC;

3.0 MPa, 620oC;

3.0 MPa, 650oC

Hardness (HV0.1):

powder 1: 350, 340, 330, 335

powder 2: 280, 275, 273, 269

[87]

Powder: NiCra;

NiCr + 50 Al2O3b;

NiCr + 30WC-Co-Crc

substrate: carbon steel

N2; 700oC; 3.6 MPaa,

3.9 MPab,

3.7 MPac

Hardness: 238 HV0.3a;

398 HV0.3b;

340 HV0.3c

[71]

Powder: 50Ni-50Ti

substrate: carbon steel

Compressed air;

2.7 MPa;

510oC

Coating thickness: 20-30 μm

hardness: (224.7 ± 20.9) HV0.2

[86]

Powder: Ni-20Cr

substrate: SA 516 boiler steel

Compressed air;

1.9 MPa;

450oC

Coating thickness: (250 ± 12) μm

hardness: 586 HV

[79]

Powder: Ni-50Cr

substrate: Superni 75

N2;

3.0 MPa;

600oC

Coating thickness: 298 μm

porosity: 0.875%

hardness: 533.5 HV

[80]

Powder 1: Diamalloy 1005 alloy;

powder 2: Diamalloy 1060 alloy

substrate: carbon steel

N2;

4.0 MPa;

800oC;

spraying distance: 40 mm

Powder 1:

coating thickness: (497 ± 39) μm

porosity: 0.21% ± 0.1%

hardness: (6.4 ± 0.5) GPa

powder 2:

coating thickness: (346 ± 23) μm

Porosity: 1.5% ± 0.2%

hardness: (5.7 ± 1.2) GPa

[85]

Table 3  Results of some cold sprayed nickel-based composite coatings[71,79,80,85-87]
Fig.14  SEM surface morphology of Ni-Al2O3 composite coating after spraying[93]
1 Li W Y, Li C J. Characteristics of cold spray process [J]. China Surf. Eng., 2002, 15(1): 12
李文亚, 李长久. 冷喷涂特性 [J]. 中国表面工程, 2002, 15(1): 12
2 Wu J, Jin H Z, Wu M J, et al. Developments in cold gas dynamic spray techndogy [J]. Mater. Rev., 2003, 17(1): 59
吴 杰, 金花子, 吴敏杰等. 冷气动力喷涂技术研究进展 [J]. 材料导报, 2003, 17(1): 59
3 Xiong T Y, Wu J, Jin H Z, et al. Introduction to a new technology—Cold gas dynamic spray [J]. Corros. Sci. Prot. Technol., 2001, 13: 267
熊天英, 吴 杰, 金花子等. 一种新喷涂技术——冷气动力喷涂 [J]. 腐蚀科学与防护技术, 2001, 13: 267
4 Li W Y, Yang K, Yin S, et al. Solid-state additive manufacturing and repairing by cold spraying: A review [J]. J. Mater. Sci. Technol., 2018, 34: 440
5 Papyrin A. Cold spray technology [J]. Adv. Mater. Processes, 2001, 159: 49
6 Yin S, Cavaliere P, Aldwell B, et al. Cold spray additive manufacturing and repair: Fundamentals and applications [J]. Addit. Manuf., 2018, 21: 628
7 Ajdelsztajn L, Schoenung J M, Jodoin B, et al. Cold spray deposition of nanocrystalline aluminum alloys [J]. Metall. Mater. Trans., 2005, 36A: 657
8 Sun C C, Ning X J, Liang X L, et al. Dynamic mechanical properties and numerical analysis of cold sprayed pure copper coating [A]. The 10th National Surface Engineering Conference and the 6th National Youth Surface Engineering Forum [C]. Wuhan: Professional Committee of Coating and Surface Protection Technology of China Society of Corrosion and Protection, 2014: 1
孙澄川, 宁先进, 梁小龙等. 冷喷涂纯铜涂层动态力学性能与数值分析 [A]. 第十届全国表面工程大会暨第六届全国青年表面工程论坛论文摘要集(一) [C]. 武汉: 中国腐蚀与防护学会涂料涂装及表面保护技术专业委员会, 2014: 1
9 Bakshi S R, Wang D, Price T, et al. Microstructure and wear properties of aluminum/aluminum-silicon composite coatings prepared by cold spraying [J]. Surf. Coat. Technol., 2009, 204: 503
10 Zhang Z H, Jiang R R, Li W Y. Influence of cold sprayed aluminum coating on the mechanical properties of friction stir welded 2024 aluminum alloy joints [J]. J. Mech. Eng., 2015, 51(22): 42
张志函, 蒋若蓉, 李文亚. 冷喷铝涂层对2024铝合金搅拌摩擦焊接头力学性能的影响 [J]. 机械工程学报, 2015, 51(22): 42
11 Li C J, Li W Y. Deposition characteristics of titanium coating in cold spraying [J]. Surf. Coat. Technol., 2003, 167: 278
12 Li W Y, Cao C C, Yang X W, et al. Cold spraying hybrid processing technology and its application [J]. J. Mater. Eng., 2019, 47(11): 53
李文亚, 曹聪聪, 杨夏炜等. 冷喷涂复合加工制造技术及其应用 [J]. 材料工程, 2019, 47(11): 53
13 Chen C G. Repair of the surface of an engine's central transmission casing by cold spraying [J]. Sci. Technol. Innov., 2020, (13): 176
陈朝刚. 某发动机中央传动机匣表面冷喷涂修复 [J]. 科学技术创新, 2020, (13): 176
14 Gu P. Cold spray for structural repair [J]. Aerosp. Power, 2018, (3): 63
谷 平. 冷喷涂用于结构修理 [J]. 航空动力, 2018, (3): 63
15 Huang R Z, Sun W, Guo S Q, et al. Research developments and applications of cold spray technology [J]. China Surf. Eng., 2020, 33(4): 16
黄仁忠, 孙 文, 郭双全等. 冷喷涂技术的研究进展与应用 [J]. 中国表面工程, 2020, 33(4): 16
16 Ma K, Li C X. Vacuum cold spraying technology and its application in functional devices [J]. China Surf. Eng., 2020, 33(4): 26
马 凯, 李成新. 真空冷喷涂技术及其在功能器件中的应用 [J]. 中国表面工程, 2020, 33(4): 26
17 Wang J Q, Cui X Y, Xiong T Y. Research progress of cold sprayed metal matrix composite coatings and materials [J]. China Surf. Eng., 2020, 33(4): 51
王吉强, 崔新宇, 熊天英. 冷喷涂金属基复合涂层及材料研究进展 [J]. 中国表面工程, 2020, 33(4): 51
18 Wu H J, Li W B, Deng C M, et al. Key techniques of cold spray additive manufacturing [J]. China Surf. Eng., 2020, 33(4): 1
吴洪键, 李文波, 邓春明等. 冷喷涂增材制造关键技术 [J]. 中国表面工程, 2020, 33(4): 1
19 Sova A, Grigoriev S, Okunkova A, et al. Potential of cold gas dynamic spray as additive manufacturing technology [J]. Int. J. Adv. Manuf. Technol., 2013, 69: 2269
20 Assadi H, Kreye H, Gärtner F, et al. Cold spraying—A materials perspective [J]. Acta Mater., 2016, 116: 382
21 Lu J, Wang G H, Huang L Z, et al. State of the research of cold spraying anticorrosion coatings [J]. Surf. Technol., 2016, 45(9): 88
卢 静, 王光华, 黄乐之等. 冷喷涂制备防腐涂层研究现状 [J]. 表面技术, 2016, 45(9): 88
22 Zhang H B, Zhang J B, Shan A D, et al. Effects of gas temperature on bonding and deformation behavior of cold-sprayed Ni particles [J]. Acta Metall. Sin., 2007, 43: 823
章华兵, 张俊宝, 单爱党等. 气体温度对冷喷涂Ni粒子结合与变形行为的影响 [J]. 金属学报, 2007, 43: 823
23 Jodoin B, Raletz F, Vardelle M. Cold spray modeling and validation using an optical diagnostic method [J]. Surf. Coat. Technol., 2006, 200: 4424
24 Luo X T, Li Y J, Li C J. A comparison of cold spray deposition behavior between gas atomized and dendritic porous electrolytic Ni powders under the same spray conditions [J]. Mater. Lett., 2016, 163: 58
25 Li W Y, Li C J. Optimization of spray conditions in cold spraying based on numerical analysis of particle velocity [J]. Trans. Nonferrous Met. Soc. China, 2004, 14(spec.2): 43
26 Li W Y, Zhang C, Guo X P, et al. Effect of standoff distance on coating deposition characteristics in cold spraying [J]. Mater. Des., 2008, 29: 297
27 Yin S, Wang X F, Li W Y. Numerical investigations on the effect of nozzle outlet diameter on jet flow field and optimal standoff distance in cold spraying [J]. China Surf. Eng., 2013, 26(1): 74
殷 硕, 王晓放, 李文亚. 喷嘴出口直径对冷喷涂射流流场及基板最佳位置影响的数值分析 [J]. 中国表面工程, 2013, 26(1): 74
28 Assadi H, Gärtner F, Stoltenhoff T, et al. Bonding mechanism in cold gas spraying [J]. Acta Mater., 2003, 51: 4379
29 Schmidt T, Gärtner F, Assadi H, et al. Development of a generalized parameter window for cold spray deposition [J]. Acta Mater., 2006, 54: 729
30 Grujicic M, Zhao C L, Derosset W S, et al. Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process [J]. Mater. Des., 2004, 25: 681
31 Bae G, Kang K, Na H, et al. Effect of particle size on the microstructure and properties of kinetic sprayed nickel coatings [J]. Surf. Coat. Technol., 2010, 204: 3326
32 Li W Y, Zhang D D, Huang C J, et al. Modelling of impact behaviour of cold spray particles: Review [J]. Surf. Eng., 2014, 30: 299
33 Li C J, Li W Y, Wang Y Y, et al. A theoretical model for prediction of deposition efficiency in cold spraying [J]. Thin Solid Films, 2005, 489: 79
34 Li C J, Li W Y, Liao H L. Examination of the critical velocity for deposition of particles in cold spraying [J]. J. Therm. Spray Technol., 2006, 15: 212
35 Raletz F, Vardelle M, Ezo'o G. Critical particle velocity under cold spray conditions [J]. Surf. Coat. Technol., 2006, 201: 1942
36 Hassani-Gangaraj M, Veysset D, Nelson K A, et al. In-situ observations of single micro-particle impact bonding [J]. Scr. Mater., 2018, 145: 9
37 Li W Y, Li C J, Wang H T, et al. About the critical velocity of cold spray particles [A]. The 11th National Welding Conference [C]. Shanghai: Chinese Mechanical Engineering Society, 2005: 3
李文亚, 李长久, 王洪涛等. 关于冷喷涂粒子临界速度 [A]. 第十一次全国焊接会议论文集(第1册) [C]. 上海: 中国机械工程学会, 2005: 3
38 Li W Y, Li C J, Wang Y Y, et al. Effect of parameters of cold sprayed Cu particles on its impacting behavior [J]. Acta Metall. Sin., 2005, 41: 282
李文亚, 李长久, 王豫跃等. 冷喷涂Cu粒子参量对其碰撞变形行为的影响 [J]. 金属学报, 2005, 41: 282
39 Wei Y K, Li Y J, Zhang Y, et al. Corrosion resistant nickel coating with strong adhesion on AZ31B magnesium alloy prepared by an in-situ shot-peening-assisted cold spray [J]. Corros. Sci., 2018, 138: 105
40 Gao Y R, Liu C M, Fu S L, et al. Electroless nickel plating on ZM6 (Mg-2.6Nd-0.6Zn-0.8Zr) magnesium alloy substrate [J]. Surf. Coat. Technol., 2010, 204: 3629
41 Sun S, Liu J G, Yan C W, et al. A novel process for electroless nickel plating on anodized magnesium alloy [J]. Appl. Surf. Sci., 2008, 254: 5016
42 Heshmati M, Seifzadeh D, Shoghi P, et al. Duplex Ni-Zn-Cu-P/Ni-P electroless coating on magnesium alloy via maleic acid pretreatment [J]. Surf. Coat. Technol., 2017, 328: 20
43 Rajabalizadeh Z, Seifzadeh D. Application of electroless Ni-P coating on magnesium alloy via CrO3/HF free titanate pretreatment [J]. Appl. Surf. Sci., 2017, 422: 696
44 Li W Y, Zhang C, Guo X P, et al. Study on impact fusion at particle interfaces and its effect on coating microstructure in cold spraying [J]. Appl. Surf. Sci., 2007, 254: 517
45 Ajdelsztajn L, Jodoin B, Schoenung J M. Synthesis and mechanical properties of nanocrystalline Ni coatings produced by cold gas dynamic spraying [J]. Surf. Coat. Technol., 2006, 201: 1166
46 Xiong Y M, Bae G, Xiong X, et al. The effects of successive impacts and cold welds on the deposition onset of cold spray coatings [J]. J. Therm. Spray Technol., 2010, 19: 575
47 Zhang H B, Zhang J B, Liang Y L, et al. Microstructures of cold-sprayed Ni coating [J]. Chin. J. Nonferrous Met., 2008, 18: 1421
章华兵, 张俊宝, 梁永立等. 冷喷涂Ni涂层的微观组织 [J]. 中国有色金属学报, 2008, 18: 1421
48 Borchers C, Gärtner F, Stoltenhoff T, et al. Microstructural bonding features of cold sprayed face centered cubic metals [J]. J. Appl. Phys., 2004, 96: 4288
49 Zou Y, Qin W, Irissou E, et al. Dynamic recrystallization in the particle/particle interfacial region of cold-sprayed nickel coating: Electron backscatter diffraction characterization [J]. Scr. Mater., 2009, 61: 899
50 Grujicic M, Saylor J R, Beasley D E, et al. Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process [J]. Appl. Surf. Sci., 2003, 219: 211
51 Li C J, Li W Y, Wang Y Y. Formation of metastable phases in cold-sprayed soft metallic deposit [J]. Surf. Coat. Technol., 2005, 198: 469
52 Bolesta A V, Fomin V M, Sharafutdinov M R, et al. Investigation of interface boundary occurring during cold gas-dynamic spraying of metallic particles [J]. Nucl. Instrum. Methods Phys. Res., 2001, 470A: 249
53 Zhou X L, Su X Y, Cui H, et al. Simulation effect of cold-sprayed particlesproperties on their impacting behaviors [J]. Acta Metall. Sin., 2008, 44: 1286
周香林, 苏贤涌, 崔 华等. 颗粒材料特性对冷喷涂撞击行为影响的模拟研究 [J]. 金属学报, 2008, 44: 1286
54 Hassani-Gangaraj M, Veysset D, Champagne V K, et al. Adiabatic shear instability is not necessary for adhesion in cold spray [J]. Acta Mater., 2018, 158: 430
55 Li W Y, Zhang C, Wang H T, et al. Significant influences of metal reactivity and oxide films at particle surfaces on coating microstructure in cold spraying [J]. Appl. Surf. Sci., 2006, 253: 3557
56 Li W Y, Li C J, Liao H L. Significant influence of particle surface oxidation on deposition efficiency, interface microstructure and adhesive strength of cold-sprayed copper coatings [J]. Appl. Surf. Sci., 2010, 256: 4953
57 Wu X K, Zhou X L, Wang J G, et al. Numerical investigation on energy balance and deposition behavior during cold spraying [J]. Acta Metall. Sin., 2010, 46: 385
巫湘坤, 周香林, 王建国等. 冷喷涂过程中能量变化及沉积行为的模拟研究 [J]. 金属学报, 2010, 46: 385
58 Nesterenko V F, Meyers M A, Lasalvia J C, et al. Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum [J]. Mater. Sci. Eng., 1997, A229: 23
59 Wei Y K, Luo X T, Chu X, et al. Ni coatings for corrosion protection of Mg alloys prepared by an in-situ micro-forging assisted cold spray: Effect of powder feedstock characteristics [J]. Corros. Sci., 2021, 184: 109397
60 Bae G, Jang J I, Lee C. Correlation of particle impact conditions with bonding, nanocrystal formation and mechanical properties in kinetic sprayed nickel [J]. Acta Mater., 2012, 60: 3524
61 Xie Y C, Planche M P, Raoelison R, et al. Investigation on the influence of particle preheating temperature on bonding of cold-sprayed nickel coatings [J]. Surf. Coat. Technol., 2017, 318: 99
62 Li W Y, Cao C C, Wang G Q, et al. ‘Cold spray +’ as a new hybrid additive manufacturing technology: A literature review [J]. Sci. Technol. Weld. Joining, 2019, 24: 420
63 Luo X T, Li Y J, Li C X, et al. Effect of spray conditions on deposition behavior and microstructure of cold sprayed Ni coatings sprayed with a porous electrolytic Ni powder [J]. Surf. Coat. Technol., 2016, 289: 85
64 Xie Y C, Chen C Y, Planche M P, et al. Effect of spray angle on Ni particle deposition behaviour in cold spray [J]. Surf. Eng., 2018, 34: 352
65 Yin S, Wang X F, Li W Y, et al. Deformation behavior of the oxide film on the surface of cold sprayed powder particle [J]. Appl. Surf. Sci., 2012, 259: 294
66 Yin S, Xie Y C, Suo X K, et al. Interfacial bonding features of Ni coating on Al substrate with different surface pretreatments in cold spray [J]. Mater. Lett., 2015, 138: 143
67 Yin S, Suo X K, Xie Y C, et al. Effect of substrate temperature on interfacial bonding for cold spray of Ni onto Cu [J]. J. Mater. Sci., 2015, 50: 7448
68 Jazaeri H, Humphreys F J. The transition from discontinuous to continuous recrystallization in some aluminium alloys: I—The deformed state [J]. Acta Mater., 2004, 52: 3239
69 Zou Y, Rezaeian A, Szpunar J A, et al. Structural transformation and mechanical properties of cold sprayed nickel coatings after annealing [J]. MRS Online Proc. Lib., 2008, 1151: 3
70 Zhang H B, Zhang J B, Liang Y L, et al. Effect of annealing treatment on microstructures and mechanical properties of cold- sprayed Ni coating [J]. Baosteel Technol., 2009, (1): 46
章华兵, 张俊宝, 梁永立等. 退火处理对冷喷涂Ni涂层组织与力学性能的影响 [J]. 宝钢技术, 2009, (1): 46
71 Koivuluoto H, Vuoristo P. Structural analysis of cold-sprayed nickel-based metallic and metallic-ceramic coatings [J]. J. Therm. Spray Technol., 2010, 19: 975
72 Lupoi R, Sparkes M, Cockburn A, et al. High speed titanium coatings by supersonic laser deposition [J]. Mater. Lett., 2011, 65: 3205
73 Marrocco T, Hussain T, McCartney D G, et al. Corrosion performance of laser posttreated cold sprayed titanium coatings [J]. J. Therm. Spray Technol., 2011, 20: 909
74 Li Z M, Yang X P, Zhang J B, et al. Interfacial mechanical behavior and electrochemical corrosion characteristics of cold-sprayed and hot-rolled titanium/stainless-steel couples [J]. Adv. Eng. Mater., 2016, 18: 1240
75 Shi Z C, Zhang X Y, Tang Z H, et al. Properties of cold spray Zn/Ni coatings on 300M Steel [J]. Surf. Technol., 2016, 45(6): 100
石仲川, 张晓云, 汤智慧等. 300M钢表面冷喷涂锌镍复合涂层性能研究 [J]. 表面技术, 2016, 45(6): 100
76 Liu D X, Shi Z C, Zhang X Y, et al. Structure and anti-corrosion properties of cold sprayed Al coatings on ZM6 magnesium alloy [J]. J. Mater. Eng., 2012, (12): 50
刘德鑫, 石仲川, 张晓云等. ZM6镁合金冷喷涂Al涂层结构与耐蚀性研究 [J]. 材料工程, 2012, (12): 50
77 Kalsi S B S, Sidhu T S, Singh H. Chlorine based hot corrosion study of cold sprayed NiCrAlY coating [J]. Surf. Eng., 2014, 30: 422
78 Kaur N, Kumar M, Sharma S K, et al. Study of mechanical properties and high temperature oxidation behavior of a novel cold-spray Ni-20Cr coating on boiler steels [J]. Appl. Surf. Sci., 2015, 328: 13
79 Kumar M, Singh H, Singh N, et al. Erosion-corrosion behavior of cold-spray nanostructured Ni-20Cr coatings in actual boiler environment [J]. Wear, 2015, 332-333: 1035
80 Singh H, Sidhu T S, Kalsi S B S, et al. Hot corrosion behavior of cold-sprayed Ni-50Cr coating in an incinerator environment at 900oC [J]. J. Therm. Spray Technol., 2015, 24: 570
81 Song B, Voisey K T, Hussain T. High temperature chlorine-induced corrosion of Ni50Cr coating: HVOLF, HVOGF, cold spray and laser cladding [J]. Surf. Coat. Technol., 2018, 337: 357
82 Ma W H, Xie Y C, Chen C Y, et al. Microstructural and mechanical properties of high-performance Inconel 718 alloy by cold spraying [J]. J. Alloys Compd., 2019, 792: 456
83 Poza P, Múnez C J, Garrido-Maneiro M A, et al. Mechanical properties of Inconel 625 cold-sprayed coatings after laser remelting. Depth sensing indentation analysis [J]. Surf. Coat. Technol., 2014, 243: 51
84 Podrabinnik P A, Shishkovsky I V. Laser post annealing of cold-sprayed Al-Ni composite coatings for green energy tasks [J]. Mater. Sci. Forum, 2015, 834: 113
85 Cavaliere P, Silvello A, Cinca N, et al. Microstructural and fatigue behavior of cold sprayed Ni-based superalloys coatings [J]. Surf. Coat. Technol., 2017, 324: 390
86 Tria S, Elkedim O, Li W Y, et al. Ball milled Ni-Ti powder deposited by cold spraying [J]. J. Alloys Compd., 2009, 483: 334
87 Xie X L, Chen C Y, Xie Y C, et al. Comparative investigation of microstructure and properties of Ni-coated FeSiAl soft magnetic composite coatings produced by cold spraying and HVOF [J]. Surf. Coat. Technol., 2019, 371: 224
88 Suo X K, Yang G J, Li C J. Preparation of Ni-based alloy diamond composite coatings by cold spray [J]. Mater. Res. Appl., 2009, 3: 32
所新坤, 杨冠军, 李长久. 镍基金刚石复合涂层的冷喷涂制备 [J]. 材料研究与应用, 2009, 3: 32
89 Koivuluoto H, Milanti A, Bolelli G, et al. High-pressure cold-sprayed Ni and Ni-Cu coatings: Improved structures and corrosion properties [J]. J. Therm. Spray Technol., 2014, 23: 98
90 Ning X J, Wang Q S, Yang J Z, et al. Cold-sprayed Ni-cBN coating and its friction and wear properties [J]. New Technol. New Process, 2018, (4): 11
宁先进, 王全胜, 杨晋智等. 冷喷涂Ni-cBN防钛火涂层及其摩擦磨损性能 [J]. 新技术新工艺, 2018, (4): 11
91 Smid I, Segall A E, Walia P, et al. Cold-sprayed Ni-hBN self-lubricating coatings [J]. Tribol. Trans., 2012, 55: 599
92 Cavaliere P, Silvello A. Mechanical and microstructural behavior of cold-sprayed titanium- and nickel-based coatings [J]. J. Therm. Spray Technol., 2015, 24: 1506
93 Li W Y, Zhang C, Liao H L, et al. Characterizations of cold-sprayed nickel-alumina composite coating with relatively large nickel-coated alumina powder [J]. Surf. Coat. Technol., 2008, 202: 4855
94 Singh H, Sidhu T S, Karthikeyan J, et al. Development and characterization of Cr3C2-NiCr coated superalloy by novel cold spray process [J]. Mater. Manuf. Processes, 2016, 31: 1476
95 Luo X T, Yang G J, Li C J. Multiple strengthening mechanisms of cold-sprayed cBNp/NiCrAl composite coating [J]. Surf. Coat. Technol., 2011, 205: 4808
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[4] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[5] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[6] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[7] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[8] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[9] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
[10] WANG Wenquan, DU Ming, ZHANG Xinge, GENG Mingzhang. Microstructure and Tribological Properties of WC-Ni Matrix Cermet Coatings Prepared by Electrospark Deposition on H13 Steel Substrate[J]. 金属学报, 2021, 57(8): 1048-1056.
[11] HUANG Songpeng, PENG Can, CAO Gongwang, WANG Zhenyao. Corrosion Behavior of Copper-Nickel Alloys Protected by BTA in Simulated Urban Atmosphere[J]. 金属学报, 2021, 57(3): 317-326.
[12] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[13] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[14] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[15] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
No Suggested Reading articles found!