Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (8): 1027-1038    DOI: 10.11900/0412.1961.2020.00351
Research paper Current Issue | Archive | Adv Search |
Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys
YANG Zhikun1, WANG Hao1(), ZHANG Yiwen2, HU Benfu1
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Beijing CISRI-Gaona Meterials Technology Co. Ltd. , Beijing 100081, China
Cite this article: 

YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys. Acta Metall Sin, 2021, 57(8): 1027-1038.

Download:  HTML  PDF(50035KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The nickel base powder superalloy prepared by modern powder metallurgy (PM) technology is selected because it has the characteristics of compatibility with strength and damage tolerance. Moreover, it is the preferred material for the fabrication of a new generation of aero-engine turbine disks. In this study, experimental techniques, such as FESEM and TEM, are used to systematically evaluate the creep properties of powder metallurgy nickel base superalloys with different Ta contents under the conditions of 750°C and 600 MPa. Additionally, the characteristics of microstructure and defosrmation behavior during creep and the effect of stacking fault energy of the alloy on creep property are also investigated. The results show that with increase in Ta content, the energy associated with alloy stacking fault decreases, demonstrating a nonlinear relationship. The deformation behavior and dislocation configuration changes in each creep deformation stage are closely related to the stacking fault energy. The stacking fault energy of alloys with low Ta content is relatively high, the matrix dislocation a/2<110> is prevented at the γ/γ' interface, and the dislocation is not easy to decompose. Furthermore, it can directly enter the γ' phase to form antiphase boundary or to bypass the γ' phase through the Orowan ring bow bending mode. If the alloy contains a moderate amount of Ta, the stacking fault energy of the alloy is reduced, promoting the decomposition of matrix dislocations at the γ/γ' interface. This results in a/6<112> Shockley incomplete dislocations and starts to shear the γ' phase, forming superlattice stacking faults (superlattice intrinsic stacking faults (SISFs) or superlattice extrinsic stacking faults (SESFs)) and extended stacking faults (ESFs), which are then transformed into deformation twins. Therefore, presenting the co-strengthening effect of stacking faults and deformation twins, which improves the creep property. The stacking fault energy of alloys with high Ta content is very low, which is favorable to the simultaneous formation of wide-sized ESFs on different {111} slip planes. The occurrence of inter-crossing stacking faults inhibits the formation of deformation twins and accelerates the development of creep deformation cracks. These experimental results demonstrate that the addition of an appropriate amount of Ta to the alloy can effectively reduce the stacking fault energy, improve the ability to form both partial dislocation shear γ' phase and micro-twins, increase creep resistance, and effectively improve the alloy creep property.

Key words:  PM superalloy      Ta      stacking fault energy      creep property     
Received:  08 September 2020     
ZTFLH:  TF125.5  
Fund: National Key Research and Development Program of China(2016YFB0700501)
About author:  WANG Hao, professor, Tel: 13811892951, E-mail: hwang@ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00351     OR     https://www.ams.org.cn/EN/Y2021/V57/I8/1027

Fig.1  The grain structures (a1-e1) and γ' phases (a2-e2) of powder metallurgy (PM) nickel base superalloys with different Ta contents
Fig.2  Schematic of stacking fault width measurement for PM nickel base superalloys with 4.8%Ta
Alloyd / nmγSF / (mJ·m-2)
0%Ta6.0336.44
1.2%Ta6.5133.75
2.4%Ta10.4021.13
3.6%Ta12.7017.30
4.8%Ta13.4916.28
Table 1  Stacking fault widths (d) and sacking fault energies (γSF) of PM nickel base superalloys
Fig.3  Creep curves of PM nickel base superalloys with different Ta contents (a) and its locally enlarged curves (b)
Allloyσmax / %ε˙ / %Ts / hTf / h
0%Ta3.36920.009475139.8236
1.2%Ta4.98960.0067160278.6950
2.4%Ta4.28080.0066240370.0900
3.6%Ta1.56520.0043165250.1142
4.8%Ta0.30280.00368085.9078
Table 2  Creep data of PM nickel base superalloys
Fig.4  Creep rate-time curves of PM nickel base superalloys containing 0%Ta (a), 1.2%Ta (b), 2.4%Ta (c), 3.6%Ta (d), and 4.8%Ta (e)
Fig.5  Low (a1-e1) and locally high (a2-e2) magnified OM images of the grain structures near the fracture surface of PM nickel base superalloys with different Ta contents
Fig.6  Low (a1-e1) and locally high (a2-e2) magnified SEM images of fracture morphologies of PM nickel base superalloys with different Ta contents
Fig.7  Low (a1-e1) and locally high (a2-e2) magnified SEM images of γ' phases of PM nickel base superalloys with different Ta contents (Arrows in Figs.7b2-e2 indicate the cutting traces)
Fig.8  TEM images of PM nickel base superalloys with different Ta contents after creep test (Insets show the corresponding SAED patterns; APB—antiphase boundary, SISF—superlattice intrinsic stacking fault, ESF—extended stacking fault)
1 Hu B F, Tian G F, Jia C C, et al. Optimization design of the high performance powder metallurgy superalloy for turbine disk [J]. Powder Metall. Technol., 2009, 27: 292
胡本芙, 田高峰, 贾成厂等. 涡轮盘用高性能粉末高温合金的优化设计探讨 [J]. 粉末冶金技术, 2009, 27: 292
2 Zhang Y W, Liu J T. Development in powder metallurgy superalloy [J]. Mater. China, 2013, 32: 1
张义文, 刘建涛. 粉末高温合金研究进展 [J]. 中国材料进展, 2013, 32: 1
3 Wu K, Liu G Q, Hu B F, et al. Research progress of new type high-performance P/M turbine disk superalloy [J]. Mater. China, 2010, 29(3): 23
吴 凯, 刘国权, 胡本芙等. 新型涡轮盘用高性能粉末高温合金的研究进展 [J]. 中国材料进展, 2010, 29(3): 23
4 Lei J F, Zheng Y, Yu J, et al. P/M Nickel-based superalloy [J]. Aerosp. Mater. Technol., 2011, 41(6): 18
雷景富, 郑 勇, 余 俊等. 镍基粉末高温合金的研究进展 [J]. 宇航材料工艺, 2011, 41(6): 18
5 Hu B F, Liu G Q, Wu K, et al. Morphological instability of γ′ phase in nickel-based powder metallurgy superalloys [J]. Acta Metall. Sin., 2012, 48: 257
胡本芙, 刘国权, 吴 凯等. 镍基粉末冶金高温合金中γ′相形态不稳定性研究 [J]. 金属学报, 2012, 48: 257
6 Mourer D P, Huron E S, Bain K R, et al. Superalloy optimized for high-temperature performance in high-pressure turbine disks [P]. US Pat, 6521175, 2003
7 Liu L R, Jin T, Sun X F, et al. Effect of Al, Ti and Ta contents on the microstructure in Ni-base single crystal superalloy during aging [J]. Rare Met. Mater. Eng., 2008, 37: 1253
刘丽荣, 金 涛, 孙晓峰等. Al、Ti和Ta含量对镍基单晶高温合金时效组织的影响 [J]. 稀有金属材料与工程, 2008, 37: 1253
8 Yang J, Dong J X, Zhang M C, et al. High temperature fatigue crack growth behavior of a novel powder metallurgy superalloy FGH98 [J]. Acta Metall. Sin., 2013, 49: 71
杨 健, 董建新, 张麦仓等. 新型镍基粉末高温合金FGH98的高温疲劳裂纹扩展行为研究 [J]. 金属学报, 2013, 49: 71
9 Park S J, Seo S M, Yoo Y S, et al. Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys [J]. Corros. Sci., 2015, 90: 305
10 Han F F, Li H, Zhang J, et al. Influence of Ta addition on the oxidation behavior of a directionally solidified nickel base superalloy [J]. J. Iron Steel Res., 2011, 23(suppl.2): 416
韩汾汾, 李 辉, 张 健等. Ta对铸造镍基高温合金氧化行为的影响 [J]. 钢铁研究学报, 2011, 23(): 416
11 Han F F, Chang J X, Li H, et al. Influence of Ta content on hot corrosion behaviour of a directionally solidified nickel base superalloy [J]. J. Alloys Compd., 2015, 619: 102
12 Wang Z C, Wang H, Huang H L, et al. Effect of Ta on high temperature tensile properties of advanced Ni-based powder metallurgy superalloys [J]. Chin. J. Mater. Res., 2019, 33: 331
王志成, 王 浩, 黄海亮等. Ta含量对高性能镍基粉末高温合金高温拉伸性能的影响 [J]. 材料研究学报, 2019, 33: 331
13 Xing P Y, Zhang Y W, Jia J. Effect of Ta content on mechanical properties of FGH4098 powder superalloy [J]. Powder Metall. Ind., 2019, 29(2): 33
刑鹏宇, 张义文, 贾 建. Ta含量对FGH4098粉末高温合金力学性能的影响 [J]. 粉末冶金工业, 2019, 29(2): 33
14 Tsai Y L, Wang S F, Bor H Y, et al. Effects of alloy elements on microstructure and creep properties of fine-grained nickel-based superalloys at moderate temperatures [J]. Mater. Sci. Eng., 2013, A571: 155
15 Wu C J, Tao Y, Jia J. Microstructure and properties of an advanced nickel-base PM superalloy [J]. J. Iron Steel Res., Int., 2014, 21: 1152
16 Sun Y J, Shang Y, Jiang X L. Effect of Ta on creep behavior of a sort of Ni-based single crystal superalloy [J]. Mater. Mech. Eng., 2013, 37(4): 6
孙跃军, 尚 勇, 姜晓琳. 钽对一种镍基单晶高温合金蠕变行为的影响 [J]. 机械工程材料, 2013, 37(4): 6
17 Sun Y J, Kang J G, Gong S K. Effects of Al, Ti and Ta on microstructure and properties of Ni-based single crystal superally [J]. Spec. Cast. Nonferrous Alloys, 2008, 28: 660
孙跃军, 康俊国, 宫声凯. Al、Ti、Ta对镍基单晶高温合金组织和性能的影响 [J]. 特种铸造及有色合金, 2008, 28: 660
18 Cui C Y, Tian C G, Zhou Y Z, et al. Dynamic strain aging in Ni base alloys with different stacking fault energy [A]. Superalloys 2012 [C]. New York: John Wiley & Sons, Inc., 2012
19 Mukherji D, Jiao F, Chen W, et al. Stacking fault formation in γ′ phase during monotonic deformation of IN738LC at elevated temperatures [J]. Acta Metall. Mater., 1991, 39: 1515
20 Banerjee D, Banerjee R, Wang Y. Formation of split patterns of γ' precipitates in Ni-Al via particle aggregation [J]. Scr. Mater., 1999, 41: 1023
21 Knowles D M, Chen Q Z. Superlattice stacking fault formation and twinning during creep in γ/γ′ single crystal superalloy CMSX-4 [J]. Mater. Sci. Eng., 2003, A340: 88
22 Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater. Sci., 1995, 39: 1
23 Kolbe M. The high temperature decrease of the critical resolved shear stress in nickel-base superalloys [J]. Mater. Sci. Eng., 2001, A319-321: 383
24 Karthikeyan S, Unocic R R, Sarosi P M, et al. Modeling microtwinning during creep in Ni-based superalloys [J]. Scr. Mater., 2006, 54: 1157
25 Unocic R R, Viswanathan G B, Sarosi P M, et al. Mechanisms of creep deformation in polycrystalline Ni-base disk superalloys [J]. Mater. Sci. Eng., 2008, A483-484: 25
26 Tian C G, Han G M, Cui C Y, et al. Effects of stacking fault energy on the creep behaviors of Ni-base superalloy [J]. Mater. Des., 2014, 64: 316
27 Kovarik L, Unocic R R, Li J, et al. Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys [J]. Prog. Mater. Sci., 2009, 54: 839
[1] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[7] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[10] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[11] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[12] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[13] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[14] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[15] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
No Suggested Reading articles found!