Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (4): 491-500    DOI: 10.11900/0412.1961.2020.00465
Overview Current Issue | Archive | Adv Search |
Polyamorphic Transitions in Metallic Glasses
ZENG Qiaoshi(), YIN Ziliang, LOU Hongbo()
Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China
Cite this article: 

ZENG Qiaoshi, YIN Ziliang, LOU Hongbo. Polyamorphic Transitions in Metallic Glasses. Acta Metall Sin, 2021, 57(4): 491-500.

Download:  HTML  PDF(1610KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metallic glasses possess densely packed and disordered atomic structures linked by non-directional metallic bonds. Within these structures, the superior properties of conventional glasses and crystalline metals can be combined with excellent physical, chemical, and mechanical properties for widespread applications. Metallic glasses also offer a unique model system for fundamental studies on amorphous materials. For these reasons, they have attracted global interest. Phase-transition studies can deepen people's understanding of the atomic structures of materials and can realize materials with tunable properties. The polyamorphic transitions in conventional amorphous materials are not expected in metallic glasses because the latter are already densely packed. However, in situ high-pressure synchrotron X-ray probing techniques have recently detected polyamorphic transitions in metallic glasses. This new phenomenon, its underlying mechanism, and the related property changes have recently sparked much excitement. This paper reviews the recent progress in polyamorphic transitions in metallic glasses and the influence of such transitions on their atomic structure and properties.

Key words:  metallic glass      polyamorphic transition      high-pressure technique      synchrotron X-ray technique     
Received:  18 November 2020     
ZTFLH:  TG139.8  
Fund: National Natural Science Foundation of China(51871054)
About author:  LOU Hongbo, assistant professor, Tel: (021)80177132, E-mail: hongbo.lou@hpstar.ac.cn
ZENG Qiaoshi, professor, Tel: (021)80177102, E-mail: zengqs@hpstar.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00465     OR     https://www.ams.org.cn/EN/Y2021/V57/I4/491

Fig.1  Discontinuous changes of volume and bulk modulus as a function of pressure discovered in Ce-based metallic glasses
Fig.2  The volume change as a function of pressure determined by X-ray transmission microscopy (TXM) and XRD[63]
Fig.3  The electronic structure origin of polyamorphic transition in the Ce75Al25 metallic glass[74]
Fig.4  Differential structure factor (a) and differential pair distribution functions (PDFs) (b) of the La43.4Pr18.6Al14Cu24 metallic glass under different pressures (Q—momentum transfer, S(Q)—structure factor, r—distance)[95]
Fig.5  Relative resistance of the Yb62.5Zn15Mg17.5Cu5 metallic glass as a function of pressure (The inset shows the microphotograph of the sample with four Pt electrodes in chamber between two anvils at about 5 GPa conditions. Rp—resistance at high pressure, R0—resistance at 0 GPa, LDAS—low-density amorphous state, HDAS—high-density amorphous state)[102]
Fig.6  Bulk modulus (a), shear modulus (b), Poisson's ratio (c), and Young's modulus (d) of the Ce68Al10-Cu20Co2 metallic glass as a function of pressure (Arrows indicate the critical pressures of the polyamorphic transition)[80]
Fig.7  Crystallization onset temperatures (Tx)of Ce75Al25 and La75Al25 metallic glasses as functions of pressure[104]
1 Angell C A. Formation of glasses from liquids and biopolymers [J]. Science, 1995, 267: 1924
2 Inoue A. High strength bulk amorphous alloys with low critical cooling rates (Overview) [J]. Mater. Trans., JIM, 1995, 36: 866
3 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
4 Klement W, Willens R H, Duwez P O L. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
5 Chen H S. Thermodynamic considerations on the formation and stability of metallic glasses [J]. Acta Metall., 1974, 22: 1505
6 Drehman A J, Greer A L, Turnbull D. Bulk formation of a metallic glass: Pd40Ni40P20 [J]. Appl. Phys. Lett., 1982, 41: 716
7 Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region [J]. Mater. Trans., JIM, 1989, 30: 965
8 Inoue A, Nakamura T, Nishiyama N, et al. Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method [J]. Mater. Trans., JIM, 1992, 33: 937
9 Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10. 0Be22.5 [J]. Appl. Phys. Lett., 1993, 63: 2342
10 Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
11 Joseph S, Shiflet G J, Ponnambalam V, et al. Synthesis and properties of high-manganese iron-based bulk amorphous metals as non-ferromagnetic amorphous steel alloys [J]. MRS Online Proc. Libr., 2002, 754: CC1.2
12 Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
13 Shen J, Chen Q J, Sun J F, et al. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy [J]. Appl. Phys. Lett., 2005, 86: 151907
14 Xu Y K, Ma H, Xu J, et al. Mg-based bulk metallic glass composites with plasticity and gigapascal strength [J]. Acta Mater., 2005, 53: 1857
15 Wang W H. Roles of minor additions in formation and properties of bulk metallic glasses [J]. Prog. Mater. Sci., 2007, 52: 540
16 Haruyama O, Nakayama Y, Wada R, et al. Volume and enthalpy relaxation in Zr55Cu30Ni5Al10 bulk metallic glass [J]. Acta Mater., 2010, 58: 1829
17 Zhang Q S, Zhang W, Inoue A. Unusual glass-forming ability of new Zr-Cu-based bulk glassy alloys containing an immiscible element pair [J]. Mater. Trans., 2008, 49: 2743
18 Zhang W, Zhang Q, Inoue A. Synthesis and mechanical properties of new Cu-Zr-based glassy alloys with high glass-forming ability [J]. Adv. Eng. Mater., 2008, 10: 1034
19 Gilbert C J, Ritchie R O, Johnson W L. Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass [J]. Appl. Phys. Lett., 1997, 71: 476
20 Inoue A, Shen B L, Koshiba H, et al. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties [J]. Nat. Mater., 2003, 2: 661
21 Ma H, Xu J, Ma E. Mg-based bulk metallic glass composites with plasticity and high strength [J]. Appl. Phys. Lett., 2003, 83: 2793
22 Liu Y H, Wang G, Pan M X, et al. Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity [J]. J. Mater. Res., 2007, 22: 869
23 Zhang T, Liu F J, Pang S J, et al. Ductile Fe-based bulk metallic glass with good soft-magnetic properties [J]. Mater. Trans., 2007, 48: 1157
24 Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility [J]. Nature, 2008, 451: 1085
25 Wang J F, Li R, Xiao R J, et al. Compressibility and hardness of Co-based bulk metallic glass: A combined experimental and density functional theory study [J]. Appl. Phys. Lett., 2011, 99: 151911
26 Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
27 Ma J, Zhang X Y, Wang D P, et al. Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance [J]. Appl. Phys. Lett., 2014, 104: 173701
28 Madge S V, Caron A, Gralla R, et al. Novel W-based metallic glass with high hardness and wear resistance [J]. Intermetallics, 2014, 47: 6
29 Xu Y F, Wang W K. Formation of a new high pressure phase: fcc Pd40Ni40P20 solid solution [J]. J. Appl. Phys., 1991, 69: 3537
30 Wang W H, He D W, Zhao D Q, et al. Nanocrystallization of ZrTiCuNiBeC bulk metallic glass under high pressure [J]. Appl. Phys. Lett., 1999, 75: 2770
31 Sun L L, Kikegawa T, Wu Q, et al. Unusual transition phenomenon in Zr-based bulk metallic glass upon heating at high pressure [J]. Appl. Phys. Lett., 2002, 80: 3087
32 Sun L L, Wu T J, Wang W K, et al. Phase transition in Pd40Ni10-Cu30P20 bulk metallic glass under HP & HT [J]. Sci. China, 2005, 48G: 716
33 Jin H J, Gu X J, Wen P, et al. Pressure effect on the structural relaxation and glass transition in metallic glasses [J]. Acta Mater., 2003, 51: 6219
34 Xue R J, Zhao L Z, Shi C L, et al. Enhanced kinetic stability of a bulk metallic glass by high pressure [J]. Appl. Phys. Lett., 2016, 109: 221904
35 Wang C, Yang Z Z, Ma T, et al. High stored energy of metallic glasses induced by high pressure [J]. Appl. Phys. Lett., 2017, 110: 111901
36 Ge T P, Wang C, Tan J, et al. Unusual energy state evolution in Ce-based metallic glass under high pressure [J]. J. Appl. Phys., 2017, 121: 205109
37 Yamada R, Shibazaki Y, Abe Y, et al. Unveiling a new type of ultradense anomalous metallic glass with improved strength and ductility through a high-pressure heat treatment [J]. NPG Asia Mater., 2019, 11: 72
38 Dmowski W, Yoo G H, Gierlotka S, et al. High pressure quenched glasses: Unique structures and properties [J]. Sci. Rep., 2020, 10: 9497
39 Shen G Y, Mao H K. High-pressure studies with X-rays using diamond anvil cells [J]. Rep. Prog. Phys., 2017, 80: 016101
40 Mao H K, Chen B, Chen J H, et al. Recent advances in high-pressure science and technology [J]. Matter Radiat. Extremes, 2016, 1: 59
41 Bridgman P W. High pressure polymorphism of iron [J]. J. Appl. Phys., 1956, 27: 659
42 Poole P H, Grande T, Angell C A, et al. Polymorphic phase transitions in liquids and glasses [J]. Science, 1997, 275: 322
43 Moulton B, Zaworotko M J. From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids [J]. Chem. Rev., 2001, 101: 1629
44 Ding Y, Ahuja R, Shu J F, et al. Structural phase transition of vanadium at 69 GPa [J]. Phys. Rev. Lett., 2007, 98: 085502
45 Poole P H, Grande T, Sciortino F, et al. Amorphous polymorphism [J]. Comput. Mater. Sci., 1995, 4: 373
46 Morishita T. High density amorphous form and polyamorphic transformations of silicon [J]. Phys. Rev. Lett., 2004, 93: 055503
47 Mishima O, Calvert L D, Whalley E. ‘Melting ice’ I at 77 K and 10 kbar: A new method of making amorphous solids [J]. Nature, 1984, 310: 393
48 Tulk C A, Hart R, Klug D D, et al. Adding a length scale to the polyamorphic ice debate [J]. Phys. Rev. Lett., 2006, 97: 115503
49 Mishima O, Suzuki Y. Propagation of the polyamorphic transition of ice and the liquid-liquid critical point [J]. Nature, 2002, 419: 599
50 Itie J P, Polian A, Calas G, et al. Pressure-induced coordination changes in crystalline and vitreous GeO2 [J]. Phys. Rev. Lett., 1989, 63: 398
51 Meade C, Hemley R J, Mao H K. High-pressure X-ray diffraction of SiO2 glass [J]. Phys. Rev. Lett., 1992, 69: 1387
52 McMillan P F. Polyamorphic transformations in liquids and glasses [J]. J. Mater. Chem., 2004, 14: 1506
53 Crichton W A, Mezouar M, Grande T, et al. Breakdown of intermediate-range order in liquid GeSe2 at high pressure [J]. Nature, 2001, 414: 622
54 Mei Q, Benmore C J, Hart R T, et al. Topological changes in glassy GeSe2 at pressures up to 9.3 GPa determined by high-energy X-ray and neutron diffraction measurements [J]. Phys. Rev., 2006, 74B: 014203
55 McMillan P F, Wilson M, Daisenberger D, et al. A density-driven phase transition between semiconducting and metallic polyamorphs of silicon [J]. Nat. Mater., 2005, 4: 680
56 Bhat M H, Molinero V, Soignard E, et al. Vitrification of a monatomic metallic liquid [J]. Nature, 2007, 448: 787
57 Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439: 419
58 Miracle D B. A structural model for metallic glasses [J]. Nat. Mater., 2004, 3: 697
59 Sheng H W, Liu H Z, Cheng Y Q, et al. Polyamorphism in a metallic glass [J]. Nat. Mater., 2007, 6: 192
60 Zeng Q S, Li Y C, Feng C M, et al. Anomalous compression behavior in lanthanum/cerium-based metallic glass under high pressure [J]. Proc. Natl. Acad. Sci. USA, 2007, 104: 13565
61 Yavari A R, Moulec A L, Inoue A, et al. Excess free volume in metallic glasses measured by X-ray diffraction [J]. Acta Mater., 2005, 53: 1611
62 Ma D, Stoica A D, Wang X L. Power-law scaling and fractal nature of medium-range order in metallic glasses [J]. Nat. Mater., 2009, 8: 30
63 Zeng Q S, Lin Y, Liu Y J, et al. General 2.5 power law of metallic glasses [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 1714
64 Belhadi L, Decremps F, Pascarelli S, et al. Polyamorphism in cerium based bulk metallic glasses: Electronic and structural properties under pressure and temperature by X-ray absorption techniques [J]. Appl. Phys. Lett., 2013, 103: 111905
65 Lin C L, Ahmad A S, Lou H B, et al. Pressure-induced amorphous-to-amorphous reversible transformation in Pr75Al25 [J]. J. Appl. Phys., 2013, 114: 213516
66 Khan S A, Wang X D, Ahmad A S, et al. Temperature- and pressure-induced polyamorphic transitions in AuCuSi alloy [J]. J. Phys. Chem., 2019, 123C: 20342
67 Duarte M J, Bruna P, Pineda E, et al. Polyamorphic transitions in Ce-based metallic glasses by synchrotron radiation [J]. Phys. Rev., 2011, 84B: 224116
68 Zeng Q S, Fang Y Z, Lou H B, et al. Low-density to high-density transition in Ce75Al23Si2 metallic glass [J]. J. Phys.: Condens. Matter, 2010, 22: 375404
69 Wang Y Y, Zhang P P, Li Q, et al. Structural evolution of heavy rare earth-based metal glass under high pressure [J]. J. Phys.: Condens. Matter, 2020, 33: 035405
70 Wang Y Y, Dong X, Song X H, et al. Reversible polyamorphic transitions in Ce65.5Al10Cu22.5Co2 metallic glass [J]. Mater. Lett., 2016, 162: 203
71 Soderlind P. Theory of the crystal structures of cerium and the light actinides [J]. Adv. Phys., 1998, 47: 959
72 Shick A B, Pickett W E, Liechtenstein A I. Ground and metastable states in γ-Ce from correlated band theory [J]. J. Electron Spectrosc. Relat. Phenom., 2001, 114-116: 753
73 Lee S K, Eng P J, Mao H K, et al. Structure of alkali borate glasses at high pressure: B and Li K-edge inelastic X-ray scattering study [J]. Phys. Rev. Lett., 2007, 98: 105502
74 Zeng Q S, Ding Y, Mao W L, et al. Origin of pressure-induced polyamorphism in Ce75Al25 metallic glass [J]. Phys. Rev. Lett., 2010, 104: 105702
75 Allen J W, Martin R M. Kondo volume collapse and the γα transition in cerium [J]. Phys. Rev. Lett., 1982, 49: 1106
76 Yavari A R. The changing faces of disorder [J]. Nat. Mater., 2007, 6: 181
77 Lipp M J, Jackson D, Cynn H, et al. Thermal signatures of the kondo volume collapse in cerium [J]. Phys. Rev. Lett., 2008, 101: 165703
78 Luo Q, Garbarino G, Sun B A, et al. Hierarchical densification and negative thermal expansion in Ce-based metallic glass under high pressure [J]. Nat. Commun., 2015, 6: 5703
79 Decremps F, Morard G, Garbarino G, et al. Polyamorphism of a Ce-based bulk metallic glass by high-pressure and high-temperature density measurements [J]. Phys. Rev., 2016, 93B: 054209
80 Zeng Q S, Zeng Z D, Lou H B, et al. Pressure-induced elastic anomaly in a polyamorphous metallic glass [J]. Appl. Phys. Lett., 2017, 110: 221902
81 Li G, Wang Y Y, Liaw P K, et al. Electronic structure inheritance and pressure-induced polyamorphism in lanthanide-based metallic glasses [J]. Phys. Rev. Lett., 2012, 109: 125501
82 Hua H, Vohra Y K, Akella J, et al. Theoretical and experimental studies on gadolinium at ultra high pressure [J]. Rev. High Pressure Sci. Technol., 1998, 7: 233
83 Errandonea D, Boehler R, Schwager B, et al. Structural studies of gadolinium at high pressure and temperature [J]. Phys. Rev., 2007, 75B: 014103
84 Bradley J A, Moore K T, Lipp M J, et al. 4f electron delocalization and volume collapse in praseodymium metal [J]. Phys. Rev., 2012, 85B: 100102
85 Chesnut G N, Vohra Y K. Phase transformations and equation of state of praseodymium metal to 103 GPa [J]. Phys. Rev., 2000, 62B: 2965
86 Li G, Jing Q, Xu T, et al. Preparation of Zr60Ni21Al19 bulk metallic glass and compression behavior under high pressure [J]. J. Mater. Res., 2011, 23: 2346
87 Stemshorn A K, Vohra Y K. Structural stability and compressibility of group IV transition metals-based bulk metallic glasses under high pressure [J]. J. Appl. Phys., 2009, 106: 046101
88 Mattern N, Bednarcik J, Liermann H P, et al. Structural behaviour of Pd40Cu30Ni10P20 metallic glass under high pressure [J]. Intermetallics, 2013, 38: 9
89 Lou H B, Xiong L H, Ahmad A S, et al. Atomic structure of Pd81Si19 glassy alloy under high pressure [J]. Acta Mater., 2014, 81: 420
90 Li L L, Wang L H, Li R F, et al. Constant real-space fractal dimensionality and structure evolution in Ti62Cu38 metallic glass under high pressure [J]. Phys. Rev., 2016, 94B: 184201
91 Li G, Li Y C, Jiang Z K, et al. Elasticity, thermal expansion and compressive behavior of Mg65Cu25Tb10 bulk metallic glass [J]. J. Non-Cryst. Solids, 2009, 355: 521
92 Wang Y Y, Zhao W, Li G, et al. Pressure-induced polyamorphic transitions in ytterbium-based bulk metallic glasses [J]. Mater. Lett., 2013, 110: 184
93 Zhao W, Wang Y Y, Liu R P, et al. High compressibility of rare earth-based bulk metallic glasses [J]. Appl. Phys. Lett., 2013, 102: 031903
94 Wang Y Y, Dong X, Song X H, et al. The effect of composition on pressure-induced polyamorphism in metallic glasses [J]. Mater. Lett., 2017, 192: 142
95 Li L L, Wang L H, Li R F, et al. Pressure-induced polyamorphism in lanthanide-solute metallic glasses [J]. Phys. Status Solidi (RRL): Rapid Res. Lett., 2017, 11: 1700078
96 Sheng H W, Ma E, Liu H Z, et al. Pressure tunes atomic packing in metallic glass [J]. Appl. Phys. Lett., 2006, 88: 171906
97 Lou H B, Fang Y K, Zeng Q S, et al. Pressure-induced amorphous-to-amorphous configuration change in Ca-Al metallic glasses [J]. Sci. Rep., 2012, 2: 376
98 Wu M, Lou H B, Tse J S, et al. Pressure-induced polyamorphism in a main-group metallic glass [J]. Phys. Rev., 2016, 94B: 054201
99 Du Q, Liu X J, Zeng Q S, et al. Polyamorphic transition in a transition metal based metallic glass under high pressure [J]. Phys. Rev., 2019, 99B: 014208
100 Zhang L J, Sun F, Hong X G, et al. Pressure-induced polyamorphism by quantitative structure factor and pair distribution function analysis in two Ce-based metallic glasses [J]. J. Alloys Compd., 2017, 695: 1180
101 Dziegielewski P, Antonowicz J, Pietnoczka A, et al. Pressure-induced transformations in Ce-Al metallic glasses: The role of stiffness of interatomic pairs [J]. J. Alloys Compd., 2018, 757: 484
102 Li L L, Luo Q, Li R F, et al. Polyamorphism in Yb-based metallic glass induced by pressure [J]. Sci. Rep., 2017, 7: 46762
103 Liu X R, Hong S M. Evidence for a pressure-induced phase transition of amorphous to amorphous in two lanthanide-based bulk metallic glasses [J]. Appl. Phys. Lett., 2007, 90: 251903
104 Zeng Q S, Struzhkin V V, Fang Y Z, et al. Properties of polyamorphous Ce75Al25 metallic glasses [J]. Phys. Rev., 2010, 82B: 054111
105 Lou H B, Zeng Z D, Zhang F, et al. Two-way tuning of structural order in metallic glasses [J]. Nat. Commun., 2020, 11: 314
106 Zhang L J, Wang J L, Tang F, et al. Pressure-induced polyamorphism in Nd60Fe30Al10 and Ce70Al10Cu20 metallic glasses by high-energy X-ray diffraction and electrical resistance measurements [J]. High Pressure Res., 2017, 37: 11
107 Zhang B, Wang R J, Wang W H. Response of acoustic and elastic properties to pressure and crystallization of Ce-based bulk metallic glass [J]. Phys. Rev., 2005, 72B: 104205
108 Yu P, Wang R J, Zhao D Q, et al. Anomalous temperature dependent elastic moduli of Ce-based bulk metallic glass at low temperatures [J]. Appl. Phys. Lett., 2007, 91: 201911
109 Yu P, Chan K C, Chen W, et al. Low-temperature mechanical properties of Ce68Al10Cu20Co2 bulk metallic glass [J]. Philos. Mag. Lett., 2011, 91: 70
[1] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[2] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[3] GUAN Pengfei, SUN Shengjun. Atomic-Level Study in the Structure and Its Instability of Metallic Glasses[J]. 金属学报, 2021, 57(4): 501-514.
[4] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[5] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[6] PAN Jie, DUAN Fenghui. Rejuvenation Behaviors in Metallic Glasses[J]. 金属学报, 2021, 57(4): 439-452.
[7] JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. 金属学报, 2021, 57(4): 425-438.
[8] BI Jiazi, LIU Xiaobin, LI Ran, ZHANG Tao. Tribological Properties of Polyalphaolefin (PAO6) Lubricant Modified with Particles Additives of Metallic Glass[J]. 金属学报, 2021, 57(4): 559-566.
[9] YANG Qun, PENG Sixu, BU Qingzhou, YU Haibin. Revealing Glass Transition and Supercooled Liquid in Ni80P20 Metallic Glass[J]. 金属学报, 2021, 57(4): 553-558.
[10] LI Ning, HUANG Xin. Recent Advances on 3D Printed Bulk Metallic Glasses[J]. 金属学报, 2021, 57(4): 529-541.
[11] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[12] YANG Gaolin, LIN Xin, LU Xiangang. Crystallization Morphology and Evolution Mechanism of Laser Multiple Remelting of Zr55Cu30Al10Ni5 Metallic Glass[J]. 金属学报, 2019, 55(12): 1544-1550.
[13] Yanchun ZHAO, Hao SUN, Chunling LI, Jianlong JIANG, Ruipeng MAO, Shengzhong KOU, Chunyan LI. High Temperature Deformation Behavior of High Strength and Toughness Ti-Ni Base Bulk Metallic Glass Composites[J]. 金属学报, 2018, 54(12): 1818-1824.
[14] Weihua WANG, Peng LUO. The Dynamic Behavior Hidden in the Long Time Scale of Metallic Glasses and Its Effect on the Properties[J]. 金属学报, 2018, 54(11): 1479-1489.
[15] Yuanyuan ZHANG,Xin LIN,Lei WEI,Yongming REN. Crystallization Behavior of Laser Solid Forming of Annealed Zr55Cu30Al10Ni5 Powder[J]. 金属学报, 2017, 53(7): 824-832.
No Suggested Reading articles found!