Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (4): 501-514    DOI: 10.11900/0412.1961.2020.00514
Overview Current Issue | Archive | Adv Search |
Atomic-Level Study in the Structure and Its Instability of Metallic Glasses
GUAN Pengfei(), SUN Shengjun
Beijing Computational Science Research Center, China Academy of Engineering Physics, Beijing 100193, China
Cite this article: 

GUAN Pengfei, SUN Shengjun. Atomic-Level Study in the Structure and Its Instability of Metallic Glasses. Acta Metall Sin, 2021, 57(4): 501-514.

Download:  HTML  PDF(12416KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Owing to limitations in the spatial and temporal resolution of the current experimental research technologies, the heterogeneity of a disordered structure poses a great challenge to the experimental study of atomic-level behaviors of amorphous alloys. Computational simulation can be a powerful tool in the understanding of such amorphous structures and their response at the atomic level. However, owing to the limitations of multielement interactions, computational approaches, and computational capability, there is still an insurmountable gap between the model systems used in computational simulation and real amorphous alloy materials. Combining the power of the modern computing technology, software, and algorithms, the exploration and development of hihgly effective computational approaches that can be applied to the simulation of amorphous alloys is a potential way to address this long-term challenge. This article reviews recent progress in the computational study of atomic structure and structural instability in metallic glasses, the role that such computational approaches can play in the understanding and the modification of material properties, and in the optimization of material preparation. A brief perspective on the research areas of the computational simulation of metallic glasses is also proposed.

Key words:  metallic glass      atomic structure      glass transition      shear deformation      computational simulation     
Received:  22 December 2020     
ZTFLH:  TG139  
Fund: National Natural Science Foundation of China(U1930402);Science Challenge Project
About author:  GUAN Pengfei, professor, Tel: (010)56981835, E-mail: pguan@csrc.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00514     OR     https://www.ams.org.cn/EN/Y2021/V57/I4/501

Fig.1  The hybrid packing method and local structural distortion in PdNiP metallic glasses. Typical atomic configuration of glassy Pd40Ni40P20. The connection between P-centered TTPs and Ni-centered icosahedra is highlighted, illustrating a topological order between the two clusters. FS, ES, and VS denote the face, edge, and vertex sharing methods between P-centered clusters. The dashed circles delineate the Ni-centered icosahedron-like polyhedra (TTP—tricapped trigonal prism)[30]
Fig.2  Softness of quasi-localized modes and the probability distribution of vibrational amplitude (Ai) in poorly annealed glasses and the ultrastable glasses, respectively[41]
Fig.3  The cooling rate and pressure dependence of the structure and dynamics response heterogeneity of metallic glasses. Reduced loss modulus (E″) as a function of scaled temperature (T?/?Tα) (a)[54] and the fraction of full icosahedra (fico) (b) (T—temperature, Tα—the temperature at which the E″ curve exhibits a peak corresponding to the α-relaxation, which signals the transition from glassy to supercooled liquid states; S1-S3, P1, and P3 denoted samples with different thermal histories)
Fig.4  Decoupling between the local clusters and the structural relaxation in confined metallic glass forming liquids[55]
Fig.5  The mechanical heterogeneity of metallic glasses in the elastic regime and the dimensionality and characteristic correlation length of most active atoms, which can be treated as flow units (STZ—shear transformation zone; arrows mark the representative flow units)
Fig.6  The universal link between E and the non-Gaussian parameter α2 of Cu50Zr50 metallic glasses under different quenched conditions (tp—the time interval of the dynamic mechanical spectroscopy simulations, subscript “peak” indicates the value of α2 or E at the peak positions in Fig.6a)[64]
Fig.7  The universal link between the reduced structural relaxation time and the maximum of non-Gaussian parameter (α2,?max)for various glass-forming liquids (τ* is the characteristic time scale under constant dynamic heterogeneity condition)[65,66]
Fig.8  The analogous evolution of the correlation lengthscale of activated flow units under the unfreezing process (a)[60] and the applied strain (b)[61]
Fig.9  Two-dimensional plot of viscosity as a function of temperature and stress in a model metallic glass (T0 = 860 K, σ0—the critical stress where η0 diverges in extrapolation to T = 0?K, σ—stress, η—viscosity, η0—the viscosity to define the glass transition)[69]
Fig.10  The variation of the structural instability pattern in metallic glasses originates from the competence between the activation of flow units and the cavitation nucleation under different applied conditions [71]
Fig.11  The stress-induced glass-to-liquid transition and the dynamical response heterogeneity during the cold joining of metallic glasses[72]
Fig.12  The history and basic characteristics of metallic glass structural models
1 Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
2 Bernal J D. A geometrical approach to the structure of liquids [J]. Nature, 1959, 183: 141
3 Bernal J D. The bakerian lecture, 1962. The structure of liquids [J]. Proc. R. Soc. London, 1964, 280A: 299
4 Bernal J D, Mason J. Packing of spheres: Co-ordination of randomly packed spheres [J]. Nature, 1960, 188: 910
5 Miracle D B. A structural model for metallic glasses [J]. Nat. Mater., 2004, 3: 697
6 Miracle D B, Sanders W S, Senkov O N. The influence of efficient atomic packing on the constitution of metallic glasses [J]. Philos. Mag., 2003, 83: 2409
7 Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439: 419
8 Finney J L. Random packings and the structure of simple liquids I. The geometry of random close packing [J]. Proc. Roy. Soc. London, 1970, 319A, 479
9 Cheng Y Q, Cao A J, Ma E. Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition [J]. Acta Mater., 2009, 57: 3253
10 Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses [J]. Prog. Mater. Sci., 2011, 56: 379
11 Hirata A, Guan P F, Fujita T, et al. Direct observation of local atomic order in a metallic glass [J]. Nat. Mater., 2011, 10: 28
12 Treacy M M J, Borisenko K B. The local structure of amorphous silicon [J]. Science, 2012, 335: 950
13 Ma E, Zhang Z. Reflections from the glass maze [J]. Nat. Mater., 2011, 10: 10
14 Hirata A, Kang L J, Fujita T, et al. Geometric frustration of icosahedron in metallic glasses [J]. Science, 2013, 341: 376
15 Hirata A, Ichitsubo T, Guan P F, et al. Distortion of local atomic structures in amorphous Ge-Sb-Te phase change materials [J]. Phys. Rev. Lett., 2018, 120: 205502
16 Matsubara E, Okada S, Ichitsubo T, et al. Initial atomic motion immediately following femtosecond-laser excitation in phase-change materials [J]. Phys. Rev. Lett., 2016, 117: 135501
17 Ma E. Tuning order in disorder [J]. Nat. Mater., 2015, 14: 547
18 Ma D, Stoica A D, Wang X L. Power-law scaling and fractal nature of medium-range order in metallic glasses [J]. Nat. Mater., 2009, 8: 30
19 Wu Z W, Wang W H. Linking local connectivity to atomic-scale relaxation dynamics in metallic glass-forming systems [J]. Acta Phys. Sin., 2020, 69: 066101
武振伟, 汪卫华. 非晶态物质原子局域连接度与弛豫动力学 [J]. 物理学报, 2020, 69: 066101
20 Wu Z W, Li M Z, Wang W H, et al. Hidden topological order and its correlation with glass-forming ability in metallic glasses [J]. Nat. Commun., 2015, 6: 6035
21 Wu Z W, Kob W, Wang W H, et al. Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt [J]. Nat. Commun., 2018, 9: 5334
22 Wu Z W, Li M Z, Wang W H, et al. Correlation between structural relaxation and connectivity of icosahedral clusters in CuZr metallic glass-forming liquids [J]. Phys. Rev., 2013, 88B: 054202
23 Hiraoka Y, Nakamura T, Hirata A, et al. Hierarchical structures of amorphous solids characterized by persistent homology [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 7035
24 Sørensen S S, Biscio C A N, Bauchy M, et al. Revealing hidden medium-range order in amorphous materials using topological data analysis [J]. Sci. Adv., 2020, 6: eabc2320
25 Chen M W. A brief overview of bulk metallic glasses [J]. NPG Asia Mater., 2011, 3: 82
26 Laws K J, Miracle D B, Ferry M. A predictive structural model for bulk metallic glasses [J]. Nat. Commun., 2015, 6: 8123
27 Cheng Y Q, Ma E, Sheng H W. Atomic level structure in multicomponent bulk metallic glass [J]. Phys. Rev. Lett., 2009, 102: 245501
28 Ediger M D, Harrowell P. Perspective: Supercooled liquids and glasses [J]. J. Chem. Phys., 2012, 137: 080901
29 Gaskell P H. A new structural model for transition metal-metalloid glasses [J]. Nature, 1978, 276: 484
30 Guan P F, Fujita T, Hirata A, et al. Structural origins of the excellent glass forming ability of Pd40Ni40P20 [J]. Phys. Rev. Lett., 2012, 108: 175501
31 Hu Y C, Wang Y Z, Su R, et al. A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation [J]. Adv. Mater., 2016, 28: 10293
32 Fujita T, Konno K, Zhang W, et al. Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability [J]. Phys. Rev. Lett., 2009, 103: 075502
33 Yuan C C, Yang F, Xi X K, et al. Impact of hybridization on metallic-glass formation and design [J]. Mater. Today, 2020, 32: 26
34 Ichitsubo T, Matsubara E, Yamamoto T, et al. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses [J]. Phys. Rev. Lett., 2005, 95: 245501
35 Liu Y H, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy [J]. Phys. Rev. Lett., 2011, 106: 125504
36 Sun X, Mo G, Zhao L Z, et al. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering [J]. Acta Phys. Sin., 2017, 66: 176109
孙 星, 默 广, 赵林志等. 小角X射线散射表征非晶合金纳米尺度结构非均匀 [J]. 物理学报, 2017, 66: 176109
37 Widmer-Cooper A, Perry H, Harrowell P, et al. Irreversible reorganization in a supercooled liquid originates from localized soft modes [J]. Nat. Phys., 2008, 4: 711
38 Mizuno H, Shiba H, Ikeda A. Continuum limit of the vibrational properties of amorphous solids [J]. Proc. Natl. Acad. Sci. USA, 2017, 114: E9767
39 Shimada M, Mizuno H, Ikeda A. Anomalous vibrational properties in the continuum limit of glasses [J]. Phys. Rev., 2018, 97E: 022609
40 Ding J, Patinet S, Falk M L, et al. Soft spots and their structural signature in a metallic glass [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 14052
41 Wang L J, Ninarello A, Guan P F, et al. Low-frequency vibrational modes of stable glasses [J]. Nat. Commun., 2019, 10: 26
42 Rainone C, Bouchbinder E, Lerner E. Pinching a glass reveals key properties of its soft spots [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 5228
43 Wang L J, Berthier L, Flenner E, et al. Sound attenuation in stable glasses [J]. Soft Matter, 2019, 15: 7018
44 Wang B, Wang L J, Shang B S, et al. Revealing the ultra-low-temperature relaxation peak in a model metallic glass [J]. Acta Mater., 2020, 195: 611
45 Huo L S, Zeng J F, Wang W H, et al. The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass [J]. Acta Mater., 2013, 61: 4329
46 Knuyt G, de Schepper L, Stals L M. Calculation of some metallic glass properties, based on the use of a gaussian distribution for the nearest-neighbour distance [J]. Philos. Mag., 1990, 61B: 965
47 Lu Z, Jiao W, Wang W H, et al. Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses [J]. Phys. Rev. Lett., 2014, 113: 045501
48 Hu Y C, Li F X, Li M Z, et al. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids [J]. Nat. Commun., 2015, 6: 8310
49 Peng H L, Li M Z, Wang W H. Structural signature of plastic deformation in metallic glasses [J]. Phys. Rev. Lett., 2011, 106: 135503
50 Zhao L Z, Wang W H, Bai H Y. Modulation of β-relaxation by modifying structural configurations in metallic glasses [J]. J. Non-Cryst. Solids, 2014, 405: 207
51 Wang J Q, Shen Y, Perepezko J H, et al. Increasing the kinetic stability of bulk metallic glasses [J]. Acta Mater., 2016, 104: 25
52 Sheng H W, Liu H Z, Cheng Y Q, et al. Polyamorphism in a metallic glass [J]. Nat. Mater., 2007, 6: 192
53 Lou H B, Zeng Z D, Zhang F, et al. Two-way tuning of structural order in metallic glasses [J]. Nat. Commun., 2020, 11: 314
54 Wang B, Shang B S, Gao X Q, et al. Understanding atomic-scale features of low temperature-relaxation dynamics in metallic glasses [J]. J. Phys. Chem. Lett., 2016, 7: 4945
55 Hu Y C, Li Y W, Yang Y, et al. Configuration correlation governs slow dynamics of supercooled metallic liquids [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 6375
56 Tong H, Tanaka H. Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids [J]. Phys. Rev., 2018, 8X: 011041
57 Wei D, Yang J, Jiang M Q, et al. Revisiting the structure-property relationship of metallic glasses: Common spatial correlation revealed as a hidden rule [J]. Phys. Rev., 2019, 99B: 014115
58 Wang Z, Wang W H. Flow units as dynamic defects in metallic glassy materials [J]. Nat. Sci. Rev., 2019, 6: 304
59 Shang B S, Guan P F, Barrat J L. Elastic avalanches reveal marginal behavior in amorphous solids [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 86
60 Wang B, Wang L J, Wang W H, et al. Understanding the maximum dynamical heterogeneity during the unfreezing process in metallic glasses [J]. J. Appl. Phys., 2017, 121: 175106
61 Wu Y C, Wang B, Hu Y C, et al. The critical strain—A crossover from stochastic activation to percolation of flow units during stress relaxation in metallic glass [J]. Scr. Mater., 2017, 134: 75
62 Guan P F, Wang B, Wu Y C, et al. Heterogeneity: The soul of metallic glasses [J]. Acta Phys. Sin., 2017, 66: 176112
管鹏飞, 王 兵, 吴义成等. 不均匀性: 非晶合金的灵魂 [J]. 物理学报, 2017, 66: 176112
63 Hu Y C, Guan P F, Li M Z, et al. Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations [J]. Phys. Rev., 2016, 93B: 214202
64 Wang B, Zhou Z Y, Guan P F, et al. Invariance of the relation between α relaxation and β relaxation in metallic glasses to variations of pressure and temperature [J]. Phys. Rev., 2020, 102B: 094205
65 Ren N N, Hu L, Wang L J, et al. Revealing a hidden dynamic signature of the non-arrhenius crossover in metallic glass-forming liquids [J]. Scr. Mater., 2020, 181: 43
66 Wang L J, Xu N, Wang W H, et al. Revealing the link between structural relaxation and dynamic heterogeneity in glass-forming liquids [J]. Phys. Rev. Lett., 2018, 120: 125502
67 Mizuno H, Mossa S, Barrat J L. Measuring spatial distribution of the local elastic modulus in glasses [J]. Phys. Rev., 2013, 87E: 042306
68 Shang B S, Rottler J, Guan P F, et al. Local versus global stretched mechanical response in a supercooled liquid near the glass transition [J]. Phys. Rev. Lett., 2019, 122: 105501
69 Guan P F, Chen M W, Egami T. Stress-temperature scaling for steady-state flow in metallic glasses [J]. Phys. Rev. Lett., 2010, 104: 205701
70 Klaumünzer D, Lazarev A, Maaß R, et al. Probing shear-band initiation in metallic glasses [J]. Phys. Rev. Lett., 2011, 107: 185502
71 Guan P F, Lu S, Spector M J B, et al. Cavitation in amorphous solids [J]. Phys. Rev. Lett., 2013, 110: 185502
72 Ma J, Yang C, Liu X D, et al. Fast surface dynamics enabled cold joining of metallic glasses [J]. Sci. Adv., 2019, 5: eaax7256
73 Li H Z, Li Z, Yang J, et al. Interface design enabled manufacture of giant metallic glasses [J]. Sci. China Mater., 2021, 64: 964
74 Topological phase transitions and topological phases of matter [EB/OL]. (2016-10-04).
75 Liu X D, Li X, He Q F, et al. Machine learning-based glass formation prediction in multicomponent alloys [J]. Acta Mater., 2020, 201: 182
76 Lu Z C, Chen X, Liu X J, et al. Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses [J]. npj Comput. Mater., 2020, 6: 187
77 Fan Z, Ding J, Ma E. Machine learning bridges local static structure with multiple properties in metallic glasses [J]. Mater. Today, 2020, 40: 48
78 An S M, Su R, Zhao S, et al. Ultrasmall nanoparticles inducing order-to-disorder transition [J]. Phys. Rev., 2018, 98B: 134101
79 Sun S J, Guan P F. The critical model size for simulating the structure-dynamics correlation in bulk metallic glasses [J]. Sci. China Mater., 2021. DOI: 10.1007/s40843-020-1537-y
[1] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[2] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[3] PAN Jie, DUAN Fenghui. Rejuvenation Behaviors in Metallic Glasses[J]. 金属学报, 2021, 57(4): 439-452.
[4] JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. 金属学报, 2021, 57(4): 425-438.
[5] LI Ning, HUANG Xin. Recent Advances on 3D Printed Bulk Metallic Glasses[J]. 金属学报, 2021, 57(4): 529-541.
[6] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[7] BI Jiazi, LIU Xiaobin, LI Ran, ZHANG Tao. Tribological Properties of Polyalphaolefin (PAO6) Lubricant Modified with Particles Additives of Metallic Glass[J]. 金属学报, 2021, 57(4): 559-566.
[8] ZENG Qiaoshi, YIN Ziliang, LOU Hongbo. Polyamorphic Transitions in Metallic Glasses[J]. 金属学报, 2021, 57(4): 491-500.
[9] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[10] YANG Qun, PENG Sixu, BU Qingzhou, YU Haibin. Revealing Glass Transition and Supercooled Liquid in Ni80P20 Metallic Glass[J]. 金属学报, 2021, 57(4): 553-558.
[11] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[12] YANG Gaolin, LIN Xin, LU Xiangang. Crystallization Morphology and Evolution Mechanism of Laser Multiple Remelting of Zr55Cu30Al10Ni5 Metallic Glass[J]. 金属学报, 2019, 55(12): 1544-1550.
[13] Yanchun ZHAO, Hao SUN, Chunling LI, Jianlong JIANG, Ruipeng MAO, Shengzhong KOU, Chunyan LI. High Temperature Deformation Behavior of High Strength and Toughness Ti-Ni Base Bulk Metallic Glass Composites[J]. 金属学报, 2018, 54(12): 1818-1824.
[14] Weihua WANG, Peng LUO. The Dynamic Behavior Hidden in the Long Time Scale of Metallic Glasses and Its Effect on the Properties[J]. 金属学报, 2018, 54(11): 1479-1489.
[15] Yuanyuan ZHANG,Xin LIN,Lei WEI,Yongming REN. Crystallization Behavior of Laser Solid Forming of Annealed Zr55Cu30Al10Ni5 Powder[J]. 金属学报, 2017, 53(7): 824-832.
No Suggested Reading articles found!