|
|
Atomic-Level Study in the Structure and Its Instability of Metallic Glasses |
GUAN Pengfei( ), SUN Shengjun |
Beijing Computational Science Research Center, China Academy of Engineering Physics, Beijing 100193, China |
|
Cite this article:
GUAN Pengfei, SUN Shengjun. Atomic-Level Study in the Structure and Its Instability of Metallic Glasses. Acta Metall Sin, 2021, 57(4): 501-514.
|
Abstract Owing to limitations in the spatial and temporal resolution of the current experimental research technologies, the heterogeneity of a disordered structure poses a great challenge to the experimental study of atomic-level behaviors of amorphous alloys. Computational simulation can be a powerful tool in the understanding of such amorphous structures and their response at the atomic level. However, owing to the limitations of multielement interactions, computational approaches, and computational capability, there is still an insurmountable gap between the model systems used in computational simulation and real amorphous alloy materials. Combining the power of the modern computing technology, software, and algorithms, the exploration and development of hihgly effective computational approaches that can be applied to the simulation of amorphous alloys is a potential way to address this long-term challenge. This article reviews recent progress in the computational study of atomic structure and structural instability in metallic glasses, the role that such computational approaches can play in the understanding and the modification of material properties, and in the optimization of material preparation. A brief perspective on the research areas of the computational simulation of metallic glasses is also proposed.
|
Received: 22 December 2020
|
|
Fund: National Natural Science Foundation of China(U1930402);Science Challenge Project |
About author: GUAN Pengfei, professor, Tel: (010)56981835, E-mail: pguan@csrc.ac.cn
|
1 |
Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
|
2 |
Bernal J D. A geometrical approach to the structure of liquids [J]. Nature, 1959, 183: 141
|
3 |
Bernal J D. The bakerian lecture, 1962. The structure of liquids [J]. Proc. R. Soc. London, 1964, 280A: 299
|
4 |
Bernal J D, Mason J. Packing of spheres: Co-ordination of randomly packed spheres [J]. Nature, 1960, 188: 910
|
5 |
Miracle D B. A structural model for metallic glasses [J]. Nat. Mater., 2004, 3: 697
|
6 |
Miracle D B, Sanders W S, Senkov O N. The influence of efficient atomic packing on the constitution of metallic glasses [J]. Philos. Mag., 2003, 83: 2409
|
7 |
Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439: 419
|
8 |
Finney J L. Random packings and the structure of simple liquids I. The geometry of random close packing [J]. Proc. Roy. Soc. London, 1970, 319A, 479
|
9 |
Cheng Y Q, Cao A J, Ma E. Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition [J]. Acta Mater., 2009, 57: 3253
|
10 |
Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses [J]. Prog. Mater. Sci., 2011, 56: 379
|
11 |
Hirata A, Guan P F, Fujita T, et al. Direct observation of local atomic order in a metallic glass [J]. Nat. Mater., 2011, 10: 28
|
12 |
Treacy M M J, Borisenko K B. The local structure of amorphous silicon [J]. Science, 2012, 335: 950
|
13 |
Ma E, Zhang Z. Reflections from the glass maze [J]. Nat. Mater., 2011, 10: 10
|
14 |
Hirata A, Kang L J, Fujita T, et al. Geometric frustration of icosahedron in metallic glasses [J]. Science, 2013, 341: 376
|
15 |
Hirata A, Ichitsubo T, Guan P F, et al. Distortion of local atomic structures in amorphous Ge-Sb-Te phase change materials [J]. Phys. Rev. Lett., 2018, 120: 205502
|
16 |
Matsubara E, Okada S, Ichitsubo T, et al. Initial atomic motion immediately following femtosecond-laser excitation in phase-change materials [J]. Phys. Rev. Lett., 2016, 117: 135501
|
17 |
Ma E. Tuning order in disorder [J]. Nat. Mater., 2015, 14: 547
|
18 |
Ma D, Stoica A D, Wang X L. Power-law scaling and fractal nature of medium-range order in metallic glasses [J]. Nat. Mater., 2009, 8: 30
|
19 |
Wu Z W, Wang W H. Linking local connectivity to atomic-scale relaxation dynamics in metallic glass-forming systems [J]. Acta Phys. Sin., 2020, 69: 066101
|
|
武振伟, 汪卫华. 非晶态物质原子局域连接度与弛豫动力学 [J]. 物理学报, 2020, 69: 066101
|
20 |
Wu Z W, Li M Z, Wang W H, et al. Hidden topological order and its correlation with glass-forming ability in metallic glasses [J]. Nat. Commun., 2015, 6: 6035
|
21 |
Wu Z W, Kob W, Wang W H, et al. Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt [J]. Nat. Commun., 2018, 9: 5334
|
22 |
Wu Z W, Li M Z, Wang W H, et al. Correlation between structural relaxation and connectivity of icosahedral clusters in CuZr metallic glass-forming liquids [J]. Phys. Rev., 2013, 88B: 054202
|
23 |
Hiraoka Y, Nakamura T, Hirata A, et al. Hierarchical structures of amorphous solids characterized by persistent homology [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 7035
|
24 |
Sørensen S S, Biscio C A N, Bauchy M, et al. Revealing hidden medium-range order in amorphous materials using topological data analysis [J]. Sci. Adv., 2020, 6: eabc2320
|
25 |
Chen M W. A brief overview of bulk metallic glasses [J]. NPG Asia Mater., 2011, 3: 82
|
26 |
Laws K J, Miracle D B, Ferry M. A predictive structural model for bulk metallic glasses [J]. Nat. Commun., 2015, 6: 8123
|
27 |
Cheng Y Q, Ma E, Sheng H W. Atomic level structure in multicomponent bulk metallic glass [J]. Phys. Rev. Lett., 2009, 102: 245501
|
28 |
Ediger M D, Harrowell P. Perspective: Supercooled liquids and glasses [J]. J. Chem. Phys., 2012, 137: 080901
|
29 |
Gaskell P H. A new structural model for transition metal-metalloid glasses [J]. Nature, 1978, 276: 484
|
30 |
Guan P F, Fujita T, Hirata A, et al. Structural origins of the excellent glass forming ability of Pd40Ni40P20 [J]. Phys. Rev. Lett., 2012, 108: 175501
|
31 |
Hu Y C, Wang Y Z, Su R, et al. A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation [J]. Adv. Mater., 2016, 28: 10293
|
32 |
Fujita T, Konno K, Zhang W, et al. Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability [J]. Phys. Rev. Lett., 2009, 103: 075502
|
33 |
Yuan C C, Yang F, Xi X K, et al. Impact of hybridization on metallic-glass formation and design [J]. Mater. Today, 2020, 32: 26
|
34 |
Ichitsubo T, Matsubara E, Yamamoto T, et al. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses [J]. Phys. Rev. Lett., 2005, 95: 245501
|
35 |
Liu Y H, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy [J]. Phys. Rev. Lett., 2011, 106: 125504
|
36 |
Sun X, Mo G, Zhao L Z, et al. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering [J]. Acta Phys. Sin., 2017, 66: 176109
|
|
孙 星, 默 广, 赵林志等. 小角X射线散射表征非晶合金纳米尺度结构非均匀 [J]. 物理学报, 2017, 66: 176109
|
37 |
Widmer-Cooper A, Perry H, Harrowell P, et al. Irreversible reorganization in a supercooled liquid originates from localized soft modes [J]. Nat. Phys., 2008, 4: 711
|
38 |
Mizuno H, Shiba H, Ikeda A. Continuum limit of the vibrational properties of amorphous solids [J]. Proc. Natl. Acad. Sci. USA, 2017, 114: E9767
|
39 |
Shimada M, Mizuno H, Ikeda A. Anomalous vibrational properties in the continuum limit of glasses [J]. Phys. Rev., 2018, 97E: 022609
|
40 |
Ding J, Patinet S, Falk M L, et al. Soft spots and their structural signature in a metallic glass [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 14052
|
41 |
Wang L J, Ninarello A, Guan P F, et al. Low-frequency vibrational modes of stable glasses [J]. Nat. Commun., 2019, 10: 26
|
42 |
Rainone C, Bouchbinder E, Lerner E. Pinching a glass reveals key properties of its soft spots [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 5228
|
43 |
Wang L J, Berthier L, Flenner E, et al. Sound attenuation in stable glasses [J]. Soft Matter, 2019, 15: 7018
|
44 |
Wang B, Wang L J, Shang B S, et al. Revealing the ultra-low-temperature relaxation peak in a model metallic glass [J]. Acta Mater., 2020, 195: 611
|
45 |
Huo L S, Zeng J F, Wang W H, et al. The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass [J]. Acta Mater., 2013, 61: 4329
|
46 |
Knuyt G, de Schepper L, Stals L M. Calculation of some metallic glass properties, based on the use of a gaussian distribution for the nearest-neighbour distance [J]. Philos. Mag., 1990, 61B: 965
|
47 |
Lu Z, Jiao W, Wang W H, et al. Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses [J]. Phys. Rev. Lett., 2014, 113: 045501
|
48 |
Hu Y C, Li F X, Li M Z, et al. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids [J]. Nat. Commun., 2015, 6: 8310
|
49 |
Peng H L, Li M Z, Wang W H. Structural signature of plastic deformation in metallic glasses [J]. Phys. Rev. Lett., 2011, 106: 135503
|
50 |
Zhao L Z, Wang W H, Bai H Y. Modulation of β-relaxation by modifying structural configurations in metallic glasses [J]. J. Non-Cryst. Solids, 2014, 405: 207
|
51 |
Wang J Q, Shen Y, Perepezko J H, et al. Increasing the kinetic stability of bulk metallic glasses [J]. Acta Mater., 2016, 104: 25
|
52 |
Sheng H W, Liu H Z, Cheng Y Q, et al. Polyamorphism in a metallic glass [J]. Nat. Mater., 2007, 6: 192
|
53 |
Lou H B, Zeng Z D, Zhang F, et al. Two-way tuning of structural order in metallic glasses [J]. Nat. Commun., 2020, 11: 314
|
54 |
Wang B, Shang B S, Gao X Q, et al. Understanding atomic-scale features of low temperature-relaxation dynamics in metallic glasses [J]. J. Phys. Chem. Lett., 2016, 7: 4945
|
55 |
Hu Y C, Li Y W, Yang Y, et al. Configuration correlation governs slow dynamics of supercooled metallic liquids [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 6375
|
56 |
Tong H, Tanaka H. Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids [J]. Phys. Rev., 2018, 8X: 011041
|
57 |
Wei D, Yang J, Jiang M Q, et al. Revisiting the structure-property relationship of metallic glasses: Common spatial correlation revealed as a hidden rule [J]. Phys. Rev., 2019, 99B: 014115
|
58 |
Wang Z, Wang W H. Flow units as dynamic defects in metallic glassy materials [J]. Nat. Sci. Rev., 2019, 6: 304
|
59 |
Shang B S, Guan P F, Barrat J L. Elastic avalanches reveal marginal behavior in amorphous solids [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 86
|
60 |
Wang B, Wang L J, Wang W H, et al. Understanding the maximum dynamical heterogeneity during the unfreezing process in metallic glasses [J]. J. Appl. Phys., 2017, 121: 175106
|
61 |
Wu Y C, Wang B, Hu Y C, et al. The critical strain—A crossover from stochastic activation to percolation of flow units during stress relaxation in metallic glass [J]. Scr. Mater., 2017, 134: 75
|
62 |
Guan P F, Wang B, Wu Y C, et al. Heterogeneity: The soul of metallic glasses [J]. Acta Phys. Sin., 2017, 66: 176112
|
|
管鹏飞, 王 兵, 吴义成等. 不均匀性: 非晶合金的灵魂 [J]. 物理学报, 2017, 66: 176112
|
63 |
Hu Y C, Guan P F, Li M Z, et al. Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations [J]. Phys. Rev., 2016, 93B: 214202
|
64 |
Wang B, Zhou Z Y, Guan P F, et al. Invariance of the relation between α relaxation and β relaxation in metallic glasses to variations of pressure and temperature [J]. Phys. Rev., 2020, 102B: 094205
|
65 |
Ren N N, Hu L, Wang L J, et al. Revealing a hidden dynamic signature of the non-arrhenius crossover in metallic glass-forming liquids [J]. Scr. Mater., 2020, 181: 43
|
66 |
Wang L J, Xu N, Wang W H, et al. Revealing the link between structural relaxation and dynamic heterogeneity in glass-forming liquids [J]. Phys. Rev. Lett., 2018, 120: 125502
|
67 |
Mizuno H, Mossa S, Barrat J L. Measuring spatial distribution of the local elastic modulus in glasses [J]. Phys. Rev., 2013, 87E: 042306
|
68 |
Shang B S, Rottler J, Guan P F, et al. Local versus global stretched mechanical response in a supercooled liquid near the glass transition [J]. Phys. Rev. Lett., 2019, 122: 105501
|
69 |
Guan P F, Chen M W, Egami T. Stress-temperature scaling for steady-state flow in metallic glasses [J]. Phys. Rev. Lett., 2010, 104: 205701
|
70 |
Klaumünzer D, Lazarev A, Maaß R, et al. Probing shear-band initiation in metallic glasses [J]. Phys. Rev. Lett., 2011, 107: 185502
|
71 |
Guan P F, Lu S, Spector M J B, et al. Cavitation in amorphous solids [J]. Phys. Rev. Lett., 2013, 110: 185502
|
72 |
Ma J, Yang C, Liu X D, et al. Fast surface dynamics enabled cold joining of metallic glasses [J]. Sci. Adv., 2019, 5: eaax7256
|
73 |
Li H Z, Li Z, Yang J, et al. Interface design enabled manufacture of giant metallic glasses [J]. Sci. China Mater., 2021, 64: 964
|
74 |
Topological phase transitions and topological phases of matter [EB/OL]. (2016-10-04).
|
75 |
Liu X D, Li X, He Q F, et al. Machine learning-based glass formation prediction in multicomponent alloys [J]. Acta Mater., 2020, 201: 182
|
76 |
Lu Z C, Chen X, Liu X J, et al. Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses [J]. npj Comput. Mater., 2020, 6: 187
|
77 |
Fan Z, Ding J, Ma E. Machine learning bridges local static structure with multiple properties in metallic glasses [J]. Mater. Today, 2020, 40: 48
|
78 |
An S M, Su R, Zhao S, et al. Ultrasmall nanoparticles inducing order-to-disorder transition [J]. Phys. Rev., 2018, 98B: 134101
|
79 |
Sun S J, Guan P F. The critical model size for simulating the structure-dynamics correlation in bulk metallic glasses [J]. Sci. China Mater., 2021. DOI: 10.1007/s40843-020-1537-y
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|