Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (9): 1175-1184    DOI: 10.11900/0412.1961.2019.00126
Overview Current Issue | Archive | Adv Search |
Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification
XU Qingyan(),YANG Cong,YAN Xuewei,LIU Baicheng
Download:  HTML  PDF(16856KB) 
Export:  BibTeX | EndNote (RIS)      

Ni-based superalloy turbine blades have been widely used in aerospace and industrial engine. Numerical simulation techniques can optimize the superalloy directional solidification process and enhance the rate of finished products. This paper summarized the existing macroscopic and microscopic numerical models in the superalloy blade directional solidification process. Simulations have been done on the temperature field evolution, grain structure and dendrite morphology in typical HRS and LMC directional solidification conditions, and the resulting microstructure features were investigated. In particular, the application of varying withdrawal rate in directional solidification of the superalloy blade was introduced. And the advantages of the varying withdrawal rate technique were emphasized by comparing it with the constant withdrawal rate method. The simulation results indicate that by applying varying withdrawal rate, the convex or concave shape of the mushy zone can be change to flat shape, so that parallel columnar grains can be obtained with enhanced high-temperature performance of the turbine blade.

Key words:  superalloy      numerical simulation      directional solidification      turbine blade     
Received:  23 April 2019     
ZTFLH:  TG132  
Fund: Supported by National Science and Technology Major Project(2017ZX04014001,2017-VII-0008-0101);National Key Research and Development Program of China(2017YFB0701503);National Natural Science Foundation of China(51374137)
Corresponding Authors:  Qingyan XU     E-mail:

Cite this article: 

XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification. Acta Metall Sin, 2019, 55(9): 1175-1184.

URL:     OR

Fig.1  Schematics of high rate solidification (HRS) (a) and liquid metal cooling (LMC) (b) directional solidification techniques
Fig.2  Temperature field simulation results of the single crystal plate samples under HRS (a) and LMC (b) directional solidification conditions
Fig.3  Temperature field simulation results and mushy zone morphologies of the turbine blade under constant (a1, a2) and varying (b1, b2) withdrawal rate directional solidification conditions [31]
Fig.4  Numerical simulation of natural convection and prediction of freckle in single crystal superalloy(a) fluid flow and freckle simulation in a 2D plate(b) comparison of simulated freckles with experimental results of a 3D ladder part
Fig.5  Simulation and experimental results of the grain structure in single crystal bar samples under HRS (a) and LMC (b) directional solidification conditions
Fig.6  Simulated temperature field and grain structure of a turbine blade under varying withdraw rate in directional solidification condition(a) varying withdrawal rate process (b) temperature distribution (c) grain structure
Fig.7  Phase-field simulation results of dendrite competitive growth in directional solidification condition(a) solidification time 14 s(b) solidification time 28 s(c) solidification time 280 s
Fig.8  Phase-field simulation results of 3D dendrite growth under HRS (a1~a3) and LMC (b1~b3) directional solidification conditions[31](a1) solidification time 10 s (a2) solidification time 15 s (a3) solidification time 100 s(b1) solidification time 5 s (b2) solidification time 7.5 s (b3) solidification time 100 s
[1] VersnyderF I, ShankM E. The development of columnar grain and single crystal high temperature materials through directional solidification [J]. Mater. Sci. Eng., 1970, 6: 213
[2] GiameiA F, TschinkelJ G. Liquid metal cooling: A new solidification technique [J]. Metall. Trans., 1976, 7A: 1427
[3] YangX L,DongH B, WangW, , et al. Microscale simulation of stray grain formation in investment cast turbine blades [J]. Mater. Sci. Eng., 2004, A386: 129
[4] MaD X. Freckle formation during directional solidification of complex castings of superalloys [J]. Acta Metall. Sin., 2016, 52: 426
[4] 马德新. 定向凝固的复杂形状高温合金铸件中的雀斑形成 [J]. 金属学报, 2016, 52: 426
[5] AvesonJ W, TennantP A, FossB J, , et al. On the origin of sliver defects in single crystal investment castings [J]. Acta Mater., 2013, 61: 5162
[6] ElliottA J, PollockT M. Thermal analysis of the bridgman and liquid-metal-cooled directional solidification investment casting processes [J]. Metall. Mater. Trans., 2007, 38A: 871
[7] BeckermannC, GuJ P, BoettingerW J. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings [J]. Metall. Mater. Trans., 2000, 31A: 2545
[8] RamirezJ C, BeckermannC. Evaluation of a Rayleigh-number-based freckle criterion for Pb-Sn alloys and Ni-base superalloys [J]. Metall. Mater. Trans., 2003, 34A: 1525
[9] GandinC A, DesbiollesJ L, RappazM, , et al. A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures [J]. Metall. Mater. Trans., 1999, 30A: 3153
[10] RappazM, GandinC A. Probabilistic modelling of microstructure formation in solidification processes [J]. Acta Metall. Mater., 1993, 41: 345
[11] XuQ Y, ZhangH, QiX, , et al. Multiscale modeling and simulation of directional solidification process of turbine blade casting with MCA method [J]. Metall. Mater. Trans., 2014, 45B: 555
[12] LiuS Z, LiJ R, TangD Z, , et al. Numerical simulation of directional solidification process of single crystal superalloys [J]. J. Mater. Eng., 1999, (7): 40
[12] 刘世忠, 李嘉荣, 唐定忠等. 单晶高温合金定向凝固过程数值模拟 [J]. 材料工程, 1999, (7): 40)
[13] PanD, XuQ Y, LiuB C. Modeling on directional solidification of superalloy blades with furnace wall temperature evolution [J]. Acta Metall. Sin., 2010, 46: 294
[13] 潘 冬, 许庆彦, 柳百成. 考虑炉壁温度变化的高温合金叶片定向凝固过程模拟 [J]. 金属学报, 2010, 46: 294
[14] ZhangH, XuQ Y, SunC B, , et al. Simulation and experimental studies on grain selection behavior of single crystal superalloy: I. Starter block [J]. Acta Metall. Sin., 2013, 49: 1508
[14] 张 航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究: I.引晶段 [J]. 金属学报, 2013, 49: 1508
[15] ZhangH, XuQ Y, SunC B, , et al. Simulation and experimental studies on grain selection behavior of single crystal superalloy: II. Spiral part [J]. Acta Metall. Sin., 2013, 49: 1521
[15] 张 航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究: II.螺旋段 [J]. 金属学报, 2013, 49: 1521
[16] WangW, LeeP D, McLeanM. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection [J]. Acta Mater., 2003, 51: 2971
[17] LiJ J, WangZ J, WangY Q, , et al. Phase-field study of competitive dendritic growth of converging grains during directional solidification [J]. Acta Mater., 2012, 60: 1478
[18] WangJ C, GuoC W, LiJ J, , et al. Recent progresses in competitive grain growth during directional solidification [J]. Acta Metall. Sin., 2018, 54: 657
[18] 王锦程, 郭春文, 李俊杰等. 定向凝固晶粒竞争生长的研究进展 [J]. 金属学报, 2018, 54: 657
[19] WarnkenN, MaD X, DrevermannA, , et al. Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys [J]. Acta Mater., 2009, 57: 5862
[20] FangH, XueH, TangQ Y, , et al. Dendrite coarsening and secondary arm migration in the mushy zone during directional solidification [J]. Acta Metall. Sin., 2019, 55: 664
[20] 方 辉, 薛 桦, 汤倩玉等. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟 [J]. 金属学报, 2019, 55: 664
[21] KermanpurA, RappazM, VarahramN, , et al. Thermal and grain-structure simulation in a land-based turbine blade directionally solidified with the liquid metal cooling process [J]. Metall. Mater. Trans., 2000, 31B: 1293
[22] CuiK, XuQ Y, YuJ, , et al. Radiative heat transfer calculation for superalloy turbine blade in directional solidification process [J]. Acta Metall. Sin., 2007, 43: 465
[22] 崔 锴,许庆彦,于 靖等. 高温合金叶片定向凝固过程中辐射换热的计算 [J]. 金属学报, 2007, 43: 465
[23] YanX W, TangN, LiuX F, , et al. Modeling and simulation of directional solidification by LMC process for nickel base superalloy casting [J]. Acta Metall. Sin., 2015, 51: 1288
[23] 闫学伟, 唐 宁, 刘孝福等. 镍基高温合金铸件液态金属冷却定向凝固建模仿真及工艺规律研究 [J]. 金属学报, 2015, 51: 1288
[24] YuanL, LeeP D. A new mechanism for freckle initiation based on microstructural level simulation [J]. Acta Mater., 2012, 60: 4917
[25] ChenY, BognoA A, XiaoN M, , et al. Quantitatively comparing phase-field modeling with direct real time observation by synchrotron X-ray radiography of the initial transient during directional solidification of an Al-Cu alloy [J]. Acta Mater., 2012, 60: 199
[26] ThévozP, DesbiollesJ L, RappazM. Modeling of equiaxed microstructure formation in casting [J]. Metall. Trans., 1989, 20A: 311
[27] KurzW, GiovanolaB, TrivediR. Theory of microstructural development during rapid solidification [J]. Acta Metall., 1986, 34: 823
[28] SteinbachI, PezzollaF. A generalized field method for multiphase transformations using interface fields [J]. Physica, 1999, 134D: 385
[29] EikenJ, B?ttgerB, SteinbachI. Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application [J]. Phys. Rev., 2006, 73E: 066122
[30] YangC, XuQ Y, LiuB C. Primary dendrite spacing selection during directional solidification of multicomponent nickel-based superalloy: Multiphase-field study [J]. J. Mater. Sci., 2018, 53: 9755
[31] XuQ Y, YangC, ZhangH, , et al. Multiscale modeling and simulation of directional solidification process of Ni-based superalloy turbine blade casting [J]. Metals, 2018, 8: 632
[32] ElliottA J, PollockT M, TinS, , et al. Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment [J]. Metall. Mater. Trans., 2004, 35A: 3221
[33] ZhangH, XuQ Y, LiuB C. Numerical simulation and optimization of directional solidification process of single crystal superalloy casting [J]. Materials, 2014, 7: 1625
[34] ZhuM F, TangQ Y, ZhangQ Y, , et al. Cellular automaton modeling of micro-structure evolution during alloy solidification [J]. Acta Metall. Sin., 2016, 52: 1297
[34] 朱鸣芳, 汤倩玉, 张庆宇等. 合金凝固过程中显微组织演化的元胞自动机模拟 [J]. 金属学报, 2016, 52: 1297
[35] ShibutaY, SakaneS, TakakiT, , et al. Submicrometer-scale molecular dynamics simulation of nucleation and solidification from undercooled melt: Linkage between empirical interpretation and atomistic nature [J]. Acta Mater., 2016, 105: 328
[1] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[2] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[3] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[4] MA Dexin,WANG Fu,XU Weitai,XU Wenliang,ZHAO Yunxing. Formation of Sliver Defects in Single CrystalCastings of Superalloys[J]. 金属学报, 2020, 56(3): 301-310.
[5] ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints[J]. 金属学报, 2020, 56(2): 171-181.
[6] LIU Xingjun, CHEN Yuechao, LU Yong, HAN Jiajia, XU Weiwei, GUO Yihui, YU Jinxin, WEI Zhenbang, WANG Cuiping. Present Research Situation and Prospect of Multi-Scale Design in Novel Co-Based Superalloys: A Review[J]. 金属学报, 2020, 56(1): 1-20.
[7] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[8] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[9] DU Jinhui,LV Xudong,DONG Jianxin,SUN Wenru,BI Zhongnan,ZHAO Guangpu,DENG Qun,CUI Chuanyong,MA Huiping,ZHANG Beijiang. Research Progress of Wrought Superalloys in China[J]. 金属学报, 2019, 55(9): 1115-1132.
[10] BI Zhongnan,QIN Hailong,DONG Zhiguo,WANG Xiangping,WANG Ming,LIU Yongquan,DU Jinhui,ZHANG Ji. Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings[J]. 金属学报, 2019, 55(9): 1160-1174.
[11] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[12] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[13] ZHANG Guoqing,ZHANG Yiwen,ZHENG Liang,PENG Zichao. Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application[J]. 金属学报, 2019, 55(9): 1133-1144.
[14] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
[15] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
No Suggested Reading articles found!