Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (8): 907-917    DOI: 10.11900/0412.1961.2016.00480
Orginal Article Current Issue | Archive | Adv Search |
Optimization and Controlling on the Microstructure, Texture and Properties of an Advanced Al-Mg-Si-Cu-Zn Alloy Sheet
Yi CHEN, Mingxing GUO(), Long YI, Bo YUAN, Gaojie LI, Linzhong ZHUANG, Jishan ZHANG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Yi CHEN, Mingxing GUO, Long YI, Bo YUAN, Gaojie LI, Linzhong ZHUANG, Jishan ZHANG. Optimization and Controlling on the Microstructure, Texture and Properties of an Advanced Al-Mg-Si-Cu-Zn Alloy Sheet. Acta Metall Sin, 2017, 53(8): 907-917.

Download:  HTML  PDF(2082KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To reduce the weight of car body, Al-Mg-Si-Cu series alloys have been widely used to produce outer body panels of automobiles due to their favorable high-strength-to-weight ratio, corrosion resistance and good formability. Moreover, the strength of Al-Mg-Si-Cu series alloys can be enhanced by artificial ageing treatments. However, their formability and final strengths still need to be further improved compared to steels, which are the major obstacles to wide-scale application of aluminum in the automotive fields. In this work, both the effect of different thermomechanical processes on formability, microstructure and texture of Al-Mg-Si-Cu-Zn alloy, and the influence of ageing treatment on its precipitation behavior were studied through mechanical property tests, OM, SEM, TEM and EBSD measurements. The results reveal that both the strengths and strain-hardening component n value of the T4P treated alloys are not affected by the two thermomechanical processes, but the r?, Δr and elongations in the different directions are significantly affected. The microstructure and texture evolution of the alloy in the two thermomechanical processes are different from each other. Both the microstructure of a little coarser and bi-modal grain size distribution, and the texture characteristics of much more components but with quite lower intensities can be seen in the solution treated alloy sheet which possesses a better formability after the T4P treatment. The hardness increment of 65 HV can be achieved in the quenched alloy after artificial ageing treatment of 185 ℃, 20 min. And then the peak-ageing state can be obtained after ageing 5 h, the hardness, yield strength, ultimate tensile strength and elongation, are as follows, 132 HV, 318 MPa, 364 MPa and 13%, respectively, and ductile fracture is the main fracture feature as observed by SEM examination of fracture surface. Mg-Si precipitates, such as β", β' and Q' phases, are still the main precipitates formed after artificial aging at 185 ℃, and β" phases mainly grow along its b axis and finally transform into β' and Q' phases, which is the main reason for the observed better ageing stability during long time artificial ageing treatment.

Key words:  Al-Mg-Si-Cu-Zn alloy      thermomechanical processing      texture      formability      precipitation     
Received:  27 October 2016     
ZTFLH:  TG146.2  
Fund: Supported by National Key Research and Development Program of China (No.2016YFB0300801), National Natural Science Foundation of China (Nos.51301016 and 51571023), National High Technical Research and Development Program of China (No.2013AA032403) and Beijing Natural Science Foundation (No.2172038)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00480     OR     https://www.ams.org.cn/EN/Y2017/V53/I8/907

Fig.1  Engineering stress-strain curves of T4P treated Al-Mg-Si-Cu-Zn alloy in different directions (a) processing I (b) processing II
Processing Direction / (o) r r? Δr n n? A / % Rp / MPa Rm / MPa
I 0 0.638 0.585 0.020 0.306 0.308 30.48 134.4 276.5
45 0.575 0.307 28.54 133.9 273.1
90 0.551 0.311 26.64 132.7 270.0
II 0 0.726 0.654 -0.031 0.304 0.309 30.28 133.5 277.7
45 0.670 0.311 27.42 131.5 272.9
90 0.551 0.312 30.15 130.4 270.3
Table 1  Mechanical properties of T4P treated Al-Mg-Si-Cu-Zn alloy samples in different directions
Fig.2  OM images of microstructure evolutions in Al-Mg-Si-Cu-Zn alloy prepared by processing I (a~c) and processing II (d~f) (a, d) intermediate annealing (b, e) cold rolling (c, f) solid solution
Fig.3  SEM images (a, b) and EDS analysis of particle A in Fig.3b (c) of the intermediate annealed Al-Mg-Si-Cu-Zn alloy prepared by processing I (a) and processing II (b, c)
Fig.4  ODF maps of cold rolled sheets with processing I (a) and processing II (b)
Fig.5  EBSD analysis maps of grain orientation (a, c) and grain size distributions (b, d) of solution treated alloy sheets with processing I (a, b) and processing II (c, d)
Fig.6  ODF maps of solution treated alloy sheets with processing I (a) and processing II (b)
Component Processing I Processing II
Intensity Volume fraction Intensity Volume fraction
CubeND{001}<310> 5.62 16.80% - -
Cube{001}<100> 1.94 6.60% 4.23 5.10%
Goss{011}<100> 1.80 2.63% 1.04 1.15%
P{011}<122> 1.06 4.71% 0.75 2.94%
Q{013}<231> 1.46 13.40% 1.15 12.20%
R{124}<211> 1.14 9.22% 1.12 11.50%
H{100}<011> 1.56 3.72% 1.11 2.91%
Brass{011}<211> - - 1.03 4.03%
S{123}<634> - - 1.54 9.85%
Table 2  Intensities and volume fractions of textures components in the solution treated alloy sheets
Fig.7  Hardness change of the solution treated alloy sheet with processing II after ageing at 185 ℃ (a) and the engineering stress-strain curve in the peak ageing condition (185 ℃, 5 h) (b)
Fig.8  SEM images (a, b) and EDS analysis of particle A in Fig.8b (c) of processing II treated alloy sheet in the peak ageing condition (T6: 185 ℃, 5 h)
Fig.9  Low (a, b) and high (c, d) magnified HRTEM images of microstructure in solution treated alloy sheet with processing II after ageing at 185 ℃ for 5 h (a, c) and 30 h (b, d) (Insets show the corresponding SAED patterns)
[1] Engler O, Hirsch J. Recrystallization textures and plastic anisotropy in Al-Mg-Si sheet alloys [J]. Mater. Sci. Forum, 1996, 217-222: 479
[2] Bennett T A, Petrov R H, Kestens L A I, et al. The effect of particle-stimulated nucleation on texture banding in an aluminium alloy[J]. Scr. Mater., 2010, 63: 461
[3] Troeger L P, Starke Jr E A. Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al-Mg-Si-Cu alloy[J]. Mater. Sci. Eng., 2000, 293A: 19
[4] Guo M X, Sha G, Cao L Y, et al.Enhanced bake-hardening response of an Al-Mg-Si-Cu alloy with Zn addition[J]. Mater. Chem. Phys., 2015, 162: 15
[5] Peng X Y, Guo M X, Wang X F, et al.Influence of particles with different sizes on microstructure, texture and mechanical properties of Al-Mg-Si-Cu series alloys[J]. Acta Metall. Sin., 2015, 51: 169(彭祥阳, 郭明星, 汪小锋等. 不同尺寸粒子对Al-Mg-Si-Cu系合金组织、织构和力学性能的影响[J]. 金属学报, 2015, 51: 169)
[6] Esmaeili S, Lloyd D J, Poole W J.A yield strength model for the Al-Mg-Si-Cu alloy AA6111[J]. Acta Mater., 2003, 51: 2243
[7] Hirth S M, Marshall G J, Court S A, et al. Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016 [J]. Mater. Sci. Eng., 2001, A319-321: 452
[8] Esmaeili S, Lloyd D J.Effect of composition on clustering reactions in AlMgSi(Cu) alloys[J]. Scr. Mater., 2004, 50: 155
[9] Gupta A K, Lloyd D J.Study of precipitation kinetics in a super purity Al-0.8 Pct Mg-0.9 Pct Si alloy using differential scanning calorimetry[J]. Metall. Mater. Trans., 1999, 30A: 879
[10] Cao L F, Rometsch P A, Couper M J.Effect of pre-ageing and natural ageing on the paint bake response of alloy AA6181A[J]. Mater. Sci. Eng., 2013, A571: 77
[11] Wolverton C.Solute-vacancy binding in aluminum[J]. Acta Mater., 2007, 55: 5867
[12] Saito T, Ehlers F J H, Lefebvre W, et al. HAADF-STEM and DFT investigations of the Zn-containing β″ phase in Al-Mg-Si alloys[J]. Acta Mater., 2014, 78: 245
[13] Ding X P, Cui H, Zhang J X, et al.The effect of Zn on the age hardening response in an Al-Mg-Si alloy[J]. Mater. Des., 2015, 65: 1229
[14] Yan L Z, Zhang Y A, Li X W, et al.Effect of Zn addition on microstructure and mechanical properties of an Al-Mg-Si alloy[J]. Prog. Nat. Sci. Mater. Int., 2014, 24: 97
[15] Cai Y H, Wang C, Zhang J S.Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy[J]. Int. J. Miner. Metall. Mater., 2013, 20: 659
[16] Saito T, Wenner S, Osmundsen E, et al.The effect of Zn on precipitation in Al-Mg-Si alloys[J]. Philos. Mag., 2014, 94: 2410
[17] Fukui S, Kudo H.The earing in deep-drawing and a directionality in tension-test of sheet metal[J]. Rep. Inst. Sci. Technol. Univ. Tokyo, 1950, 4: 33
[18] Lankford W T, Snyder S C, Bauscher J A.New criteria for predicting the press performance of deep drawing sheets[J]. Trans. ASM, 1950, 42: 1197
[19] Inoue H, Takasugi T.Texture control for improving deep drawability in rolled and annealed aluminum alloy sheets[J]. Mater. Trans., 2007, 48: 2014
[20] Wang X F, Guo M X, Chapuis A, et al.The dependence of final microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloy sheets on the intermediate annealing[J]. Mater. Sci. Eng., 2015, A633: 46
[21] Liu W C, Man C S, Morris J G.Lattice rotation of the cube orientation to the β fiber during cold rolling of AA 5052 aluminum alloy[J]. Scr. Mater., 2001, 45: 807
[22] Lücke K, Engler O.Effects of particles on development of microstructure and texture during rolling and recrystallisation in fcc alloys[J]. Mater. Sci. Technol., 1990, 6: 1113
[23] Bennett T A, Petrov R H, Kestens L A I. Effect of particles on texture banding in an aluminium alloy[J]. Scr. Mater., 2010, 62: 78
[24] Engler O, Lücke K.Mechanisms of recrystallization texture formation in aluminium alloys[J] Scr. Metall. Mater., 1992, 27: 1527
[25] Kashihara K, Inagaki H.Effect of precipitation on development of recrystallization texture in a 6061 aluminum alloy[J]. Mater. Trans., 2009, 50: 528
[26] Engler O, Yang P, Kong X W.On the formation of recrystallization textures in binary Al-1.3%Mn investigated by means of local texture analysis[J]. Acta Mater., 1996, 44: 3349
[27] Ding L P, Jia Z H, Zhang Z Q, et al.The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions[J]. Mater. Sci. Eng., 2015, A627: 119
[28] Li Y, Guo M X, Jiang N, et al.Precipitation behaviors and preparation of an advanced Al-0.93Mg-0.78Si-0.20Cu-3.00Zn alloy for automotive application[J]. Acta Metall. Sin., 2016, 52: 191(李勇, 郭明星, 姜宁等. 汽车用新型Al-0.93Mg-0.78Si-0.20Cu-3.00Zn合金的制备及其时效析出行为研究[J]. 金属学报, 2016, 52: 191)
[29] Wolverton C.Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys[J]. Acta Mater., 2001, 49: 3129
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[3] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[4] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[5] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[6] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[8] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[9] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[10] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[11] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[12] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[13] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[14] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[15] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
No Suggested Reading articles found!