Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (8): 897-906    DOI: 10.11900/0412.1961.2016.00559
Orginal Article Current Issue | Archive | Adv Search |
Quantitative Characterization on the Precipitation of AA 7055 Aluminum Alloy by SAXS
Junzhou CHEN1,2(), Liangxing LV3, Liang ZHEN3, Shenglong DAI1,2
1 Institute of Aluminum Alloy, Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China
3 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

Junzhou CHEN, Liangxing LV, Liang ZHEN, Shenglong DAI. Quantitative Characterization on the Precipitation of AA 7055 Aluminum Alloy by SAXS. Acta Metall Sin, 2017, 53(8): 897-906.

Download:  HTML  PDF(1518KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

AA 7055 aluminum alloy is a newly advanced Al-Zn-Mg-Cu alloy. It has been wide applied in aviation and aerospace field due to its attractive combined properties, such as high strength, high fracture toughness, good resistance to the growth of fatigue cracks and good stress corrosion resistance, and so on. It is generally believed that the optimum ageing precipitates are responsible for these good properties. However, the detailed information, such as size and its distribution, volume fraction, and morphology of precipitate in this alloy is still not clear. Although TEM is used to determine these information, the results are mostly qualitative. Small angle X-ray scattering (SAXS) provides a direct technique to determine the size, morphology and volume fraction of nano-scale particles and the sampling size is much larger than that in TEM. In this work, the evolution of the precipitates during ageing at 120 and 160 ℃ in AA 7055 aluminum alloy were investigated systematically and quantitatively by SAXS technique. The results show that, when ageing at 120 ℃, the average radius of the precipitates increases with increasing the ageing time. After ageing for 5 h and later, the average radius of the precipitates is 3.3 nm, and its distribution almost keeps stably. The volume fraction of the precipitates is also increased with increasing the ageing time. When ageing from 5 h to 60 h, the volume fraction increases from 2.4% to 5.2%. When ageing at 160 ℃, however, the average radius of the precipitates increases from 3.1 nm to 11.7 nm with increasing the ageing time from 0.5 h to 72 h. The volume fraction of the precipitates increases from 1.4% to 5.4% with increasing the ageing time from 0.5 h to 16 h. After ageing for 16 h and later, the volume fraction of the precipitates keeps stably. Both ageing at 120 and 160 ℃, the morphology of the precipitates is similar to a flat ellipsoid with an axis ratio between 0.2 and 0.3. Based on these quantitative results of the precipitates, the strength models during ageing will be built possibility.

Key words:  AA 7055 aluminum alloy      ageing precipitation      SAXS      quantitative characterization     
Received:  13 December 2016     
ZTFLH:  TG146.2  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00559     OR     https://www.ams.org.cn/EN/Y2017/V53/I8/897

Fig.1  SAXS curves of the AA 7055 Al alloy aged at 120 ℃ (a) and 160 ℃ (b) for different ageing times (I(h)—scattering intensity, h—scattering vector)
Fig.2  Guinier curves at low angle regions for the AA 7055 Al alloy aged at 120 ℃ for 5 h (a) and 24 h (b) (lnI(h)—natural logarithm of scattering intensity , h2—square of scattering vector)
Fig.3  Guinier curves at low angle regions for the AA 7055 Al alloy aged at 160 ℃ for 0.5 h (a) and 48 h (b)
Fig.4  Gyration radius of precipitate RG in the AA 7055 Al alloy aged at 120 and 160 ℃ for different times
Fig.5  Theoretical scattered curves with different axis ratios ω (R—half-length for unequal axis)
Fig.6  Comparisons of experimental and theoretical scattered curves of precipitations with different ω for the AA 7055 Al alloy aged at 120 ℃ for 5 h (a) and 48 h (b)
Fig.7  Comparisons of experimental and theoretical scattered curves of precipitations with different ω for the AA 7055 Al alloy aged at 160 ℃ for 0.5 h (a) and 48 h (b)
Fig.8  Evolutions of precipitate radius for the AA 7055Al alloy aged at 120 and 160 ℃ for different times (R—precipitate radius)
Fig.9  Porod curves (a, c) and divided scattered curves (b, d) for the AA 7055 Al alloy aged at 120 ℃ for 5 h (a, b) and 24 h (c, d) (h1—scattering vector from low angle, h2—scattering vector from high angle, Kp—Porod constant)
t / h Kp / 10-5 Qh / 10-5 RP μ σ2
5 2.05 3.32 1.55 0.89 2.57
9 3.29 5.03 1.46 0.84 2.56
12 3.32 5.52 1.59 0.91 2.57
16 3.94 6.29 1.52 0.88 2.56
24 3.93 6.52 1.58 0.91 2.58
40 4.23 6.89 1.56 0.95 2.43
48 4.00 6.65 1.59 0.94 2.50
60 4.43 7.21 1.55 0.89 2.56
Table 1  Parameters associated with precipitate size distribution for the AA 7055 Al alloy aged at 120 ℃ for different times
Fig.10  Logarithm Gaussian distributions (p(R)) of precipitate radius for the AA 7055 Al alloy aged at 120 ℃ for different times
Fig.11  Porod curves (a, c) and divided scattered curves (b, d) for the AA 7055 Al alloy aged at 160 ℃ for 0.5 h (a, b) and 48 h (c, d)
Fig.12  Logarithm Gaussian distributions (p(R)) of precipitate radius for the AA 7055 Al alloy aged at 160 ℃ for different times
t / h Kp / 10-5 Qh / 10-5 RP μ σ2
0.5 1.54 1.94 1.20 0.61 2.83
5 2.05 4.00 1.75 0.97 2.64
7 2.18 5.21 2.28 1.35 2.50
12 2.20 6.12 2.66 1.54 2.56
16 2.56 7.40 2.76 1.56 2.60
24 2.29 7.50 3.13 1.73 2.65
48 1.53 6.88 4.28 2.38 2.64
60 1.48 7.52 4.86 2.73 2.62
Table 2  Parameters associated with precipitate size distribution for the AA 7055 Al alloy aged at 160 ℃
Fig.13  Evolution of the precipitates volume fraction for the AA 7055 Al alloy during the ageing
[1] Deschamps A, Livet F, Bréchet Y.Influence of predeformation on ageing in an Al-Zn-Mg alloy——I. Microstructure evolution and mechanical properties[J]. Acta Mater., 1998, 47: 281
[2] Ferragut R, Somoza A, Tolley A.Microstructural evolution of 7012 alloy during the early stages of artificial ageing[J]. Acta Mater., 1999, 47: 4355
[3] Li X Z, Hansen V, Gj?nnes J, et al.HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al-Zn-Mg alloys[J]. Acta Mater., 1999, 47: 2651
[4] Berg L K, Gj?nnes J, Hansen V, et al.GP-zones in Al-Zn-Mg alloys and their role in artificial aging[J]. Acta Mater., 2001, 49: 3443
[5] Sha G, Cerezo A.Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050)[J]. Acta Mater., 2004, 52: 4503
[6] Fan X G.Study on the microstructures and mechanical properties and the fracture behavior of the Al-Zn-Mg-Cu-Zr alloys [D]. Harbin: Harbin Institute of Technology, 2007(樊喜刚. Al-Zn-Mg-Cu-Zr合金组织性能和断裂行为的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2007)
[7] Wang D, Ma Z Y.Investigation of post-clod rolling aging processes on solutionized 7050 aluminum alloy[J]. Acta Metall. Sin., 2010, 46: 581(王东, 马宗义. 固溶处理后冷轧变形7050铝合金时效工艺研究[J]. 金属学报, 2010, 46: 581)
[8] Wang Y L, Pan Q L, Wei L L, et al.Effect of retrogression and reaging treatment on the microstructure and fatigue crack growth behavior of 7050 aluminum alloy thick plate[J]. Mater. Des., 2014, 55: 857
[9] Li H, Wang Z X, Miao F F, et al.Effect of the thermo-mechanical treatment of pre-ageing, cold-rolling and re-ageing on microstructures and mechanical properties of 6061 Al alloy[J]. Acta Metall. Sin., 2014, 50: 1244(李海, 王芝秀, 苗芬芬等. 预时效+冷轧变形+再时效对6061铝合金微观组织和力学性能的影响[J]. 金属学报, 2014, 50: 1244)
[10] Li M H, Yang Y Q, Huang B, et al.In situ HRTEM observation of electron-irradiation-induced amorphization and dissolution of the E (Al18Cr2Mg3) Phase in 7475 Al Alloy[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 147
[11] Du Z W, Sun Z M, Shao B L, et al.Quantitative evaluation of precipitates in an Al-Zn-Mg-Cu alloy after isothermal aging[J]. Mater. Character., 2006, 56: 121
[12] Du Z W.Precipitation and strengthening of 7000 serials and their Li containing aluminum alloys [D]. Beijing: Beijing University of Aeronautics and Astronautics, 2005(杜志伟. Al-Zn-Mg-Cu及其含Li合金沉淀析出过程显微结构演化的研究 [D]. 北京: 北京航空航天大学, 2005)
[13] Wei F, Li J S, Zhou T T, et al.Influence of lithium on the kinetics of phase transformation in 7000 series aluminum alloy by SAXS investigation[J]. Acta Aeronaut. Astronaut. Sin., 2008, 29: 1037(魏芳, 李金山, 周铁涛等. 用SAXS研究锂对7000系铝合金相变动力学的影响[J]. 航空学报, 2008, 29: 1037)
[14] Liu J. Advanced aluminium and hybrid aerostructures for future aircraft [J]. Mater. Sci. Forum, 2006, 519-521: 1233
[15] Cong F G, Zhao G, Tian N, et al.Research progress and development trend of strengthening-toughening of ultra-high strength 7××× aluminum alloy[J]. Light Alloy Fabr. Technol., 2012, 40(10): 23(丛福官, 赵刚, 田妮等. 7×××系超高强铝合金的强韧化研究进展及发展趋势[J]. 轻合金加工技术, 2012, 40(10): 23)
[16] Srivatsan T S, Sriram S, Veeraraghavan D, et al.Microstructure, tensile deformation and fracture behaviour of aluminium alloy 7055[J]. J. Mater. Sci., 1997, 32: 2883
[17] Chen K H, Liu W H, Liu Y Z.Effect of promotively-solutionizing heat treatment on the mechanical properties and fracture behavior of Al-Zn-Mg-Cu alloys[J]. Acta Metall. Sin., 2001, 37: 29(陈康华, 刘红卫, 刘允中. 强化固溶对Al-Zn-Mg-Cu合金力学性能和断裂行为的影响[J]. 金属学报, 2001, 37: 29)
[18] Liu S D, Li C B, Deng Y L, et al.Influence of aging on the hardenability of 7055 aluminum alloy thick plate[J]. Acta Metall. Sin., 2012, 48: 343(刘胜胆, 李承波, 邓运来等. 时效对7055铝合金厚板淬透性的影响[J]. 金属学报, 2012, 48: 343)
[19] Chen J Z, Zhen L, Shao W Z, et al.Through-thickness texture gradient in AA 7055 aluminum alloy[J]. Mater. Lett., 2008, 62: 88
[20] Zhen L, Chen J Z, Yang S J, et al.Development of microstructures and texture during cold rolling in AA 7055 aluminum alloy[J]. Mater. Sci. Eng., 2009, A504: 55
[21] Mondal C, Mukhopadhyay A K.On the nature of T (Al2Mg3Zn3) and S (Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy[J]. Mater. Sci. Eng., 2005, A391: 367
[22] Chen J Z, Zhen L, Yang S J, et al.Investigation of precipitation behavior and related hardening in AA 7055 aluminum alloy[J]. Mater. Sci. Eng., 2009, A500: 34
[23] Guinier A.Small-Angle Scattering of X-ray[M]. New York: Weily, 1955: 1
[24] Meng Z F.Theory and Application of Small Angle X-ray Scattering [M]. Changchun: Jilin Science and Techonology Press, 1996: 24(孟昭富. 小角X射线散射理论及应用 [M]. 长春: 吉林科学技术出版社, 1996: 24)
[25] Meng Z F.Determination of mopholohy and size of precipitation in LC4 aluminum alloy by small angle X-ray scattering[J]. Chin. Sci. Bul., 1988, 22: 1723(孟昭富. 小角X射线散射测定LC4铝合金时效析出的相形状和尺寸[J]. 科学通报, 1988, 22: 1723)
[26] Xu Y.Investigation of the size distribution of nanoparticles by small angle X-ray scattering[J]. Phys. Exp., 2002, 22(8): 38(徐跃. 用小角X射线散射研究纳米粒子的粒度分布[J]. 物理实验, 2002, 22(8): 38)
[27] Guyot P, Cottignies L.Precipitation kinetics, mechanical strength and electrical conductivity of AlZnMgCu alloys[J]. Acta Mater., 1996, 44: 4161
[28] Luzzati V, Witz J, Nicolaieff A.Détermination de la masse et des dimensions des protéines en solution par la diffusion centrale des rayons X mesurée à l'échelle absolue: Exemple du lysozyme[J]. J. Mol. Biol., 1961, 3: 367
[29] Zhu Y P.Small Angle X-ray Scattering——Theory, Determination, and Computer and Application [M]. Beijing: Chemical Industry Press, 2008: 128(朱育平. 小角X射线散射——理论、测试、计算及应用 [M]. 北京: 化学工业出版社, 2008: 128)
[30] Marsh S P, Glicksman M E.Kinetics of phase coarsening in dense systems[J]. Acta Mater., 1996, 44: 3761
[1] Chao CAI,Yang LI,Jinfeng LI,Zhao ZHANG,Jianqing ZHANG. Correlation Between Ageing Precipitation, Potential and Intergranular Corrosion of 2A97 Al-Li Alloy Sheet[J]. 金属学报, 2019, 55(8): 958-966.
[2] Rui XIE,Zheng LU,Chenyang LU,Zhengyuan LI,Xueyong DING,Chunming LIU. CHARACTERIZATION OF NANOSIZED PRECIPITATES IN 9Cr-ODS STEELS BY SAXS AND TEM[J]. 金属学报, 2016, 52(9): 1053-1062.
[3] Yadong CHEN, Yunrong ZHENG, Qiang FENG. EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION[J]. 金属学报, 2016, 52(12): 1545-1556.
No Suggested Reading articles found!