Research Progress on Biodegradable Zinc-Based Biomaterials
Luning WANG1,2(), Yao MENG1, Lijun LIU1, Chaofang DONG2,3, Yu YAN3
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 3 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article:
Luning WANG, Yao MENG, Lijun LIU, Chaofang DONG, Yu YAN. Research Progress on Biodegradable Zinc-Based Biomaterials. Acta Metall Sin, 2017, 53(10): 1317-1322.
In recent years, zinc, as an essential trace element, with its alloys has attracted increasing attention as new biodegradable metals because of its appropriate degradation rate and degradation behavior. In this stage, it appears that the fabrication and degradation mechanism of zinc alloys as biodegradable metal still needs abundant systematic study. This review summarizes progress towards biodegradable zinc alloys. It emphasizes the current understanding of physiological and biological benefits of zinc and its biocompatibility. Finally, the review provides an outlook on challenges in designing zinc-based stents of optimal mechanical properties and biodegradation rate.
Table 1 Key properties and aspects of potential biodegradable metals [11]
Alloy
Phase
State
Ultimate tensile
Elongation
Yield strength
Ref.
strength / MPa
%
MPa
Zn-2Li
Zn, LiZn4
Rolled
370
14.3
245
[21]
Zn-4Li
450
14
425
Zn-6Li
560
2
470
Zn-0.1Li
Zn, LiZn4
Extruded
274±61
17±7
[22]
Zn-4Cu
Zn, CuZn5
Extruded
270±10
51±2
250±10
[23]
Zn-Cu-0.1Mg
Zn, CuZn5, Mg2Zn11
Extruded
380
8
345
[24]
Zn-xAg
Zn, AgZn3
Extruded
203~287
32~39
150~242
[25]
(x=2.5, 5.0, 7.0)
Zn-1Ca
Zn, CaZn13
Rolled
250
13
220
[26]
Zn-1Mg
Zn, MgZn2
Rolled
240
12
190
Zn-1Sr
Zn, SrZn13
Rolled
185
19.6
230
Zn-1Mg-1Ca
Zn, CaZn13, MgZn2
Rolled
197
8.5
138
[27]
Zn-1Mg-1Sr
Zn, SrZn13, MgZn2
Rolled
200
9.5
140
Zn-1Ca-1Sr
Zn, SrZn13, CaZn13
Rolled
202
9
142
Zn-3Mg
Zn, Mg2Zn11
Rolled
104
2.3
[28]
Homogenized
88
8.8
Table 2 Mechanical properties of zinc alloys[21-28]
[1]
Grüntzig A, Vetter W, Meier B, et al.Treatment of renovascular hypertension with percutaneous transluminal dilatation of a renal-artery stenosis[J]. Lancet, 1978, 311: 801
[2]
Lukenda J, Biocina-Lukenda D.Stent, endovascular prosthesis, net or strut? What would British dentist Charles Stent (1807-1885) have to say on all this?[J]. Lijec Vjesn, 2009, 131: 30
Moravej M, Mantovani D.Biodegradable metals for cardiovascular stent application: Interests and new opportunities[J]. Int. J. Mol. Sci., 2011, 12: 4250
[5]
SSYLVIA Study Investigators.Stenting of symptomatic atherosclerotic lesions in the vertebral or intracranial arteries (SSYLVIA)[J]. Stroke, 2004, 35: 1388
[6]
Palmerini T, Benedetto U, Biondizoccai G, et al.Long-term safety of drug-eluting and bare-metal stents: Evidence from a comprehensive network meta-analysis[J]. J. Am. Coll. Cardiol., 2015, 65: 2496
[7]
Farooq V, Gogas B D, Serruys P W.Restenosis: Delineating the numerous causes of drug-eluting stent restenosis[J]. Circ. Cardiovasc. Interv., 2011, 4: 195
Schinhammer M, H?nzi A C, L?ffler J F, et al.Design strategy for biodegradable Fe-based alloys for medical applications[J]. Acta. Biomater., 2010, 6: 1705
[10]
Kuhlmann J, Bartsch I, Willbold E, et al.Fast escape of hydrogen from gas cavities around corroding magnesium implants[J]. Acta. Biomater., 2013, 9: 8714
[11]
Seitz J M, Durisin M, Goldman J, et al.Recent advances in biodegradable metals for medical sutures: A critical review[J]. Adv. Healthc. Mater., 2015, 4: 1915
[12]
Frederickson C J, Koh J Y, Bush A I.The neurobiology of zinc in health and disease[J]. Nat. Rev. Neurosci., 2005, 6: 449
[13]
Chen W Q.The trace element zinc and human body's care[J]. stud. Trace Elem. Health., 2006, 23: 62(陈文强. 微量元素锌与人体健康[J]. 微量元素与健康研究, 2006, 23: 62)
[14]
Qiu Q Q, Zhang Y, Xiong Y B, et al.Influence of zinc deficiency on children's health[J]. GD Trace Elem. Sci., 2011, 18: 14(邱清权, 张勇, 熊玉宝等. 缺锌对儿童健康的影响[J]. 广东微量元素科学, 2011, 18: 14)
[15]
Trumbo P, Yates A A, Schlicker S, et al.Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc[J]. J Am. Diet. Assoc., 2001, 101: 294
[16]
Hennig B, Toborek M, McClain C J. Antiatherogenic properties of zinc: Implications in endothelial cell metabolism[J]. Nutrition., 1996, 12: 711
[17]
Wu W, Gastaldi D, Yang K, et al.Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels[J]. Mater. Sci. Eng., 2011, B176: 1733
[18]
Bowen P K, Shearier E R, Zhao S, et al.Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn alloys[J]. Adv. Healthc. Mater., 2016, 5: 1121
[19]
Zhang S X, Zhang X N, Zhao C L, et al.Research on an Mg-Zn alloy as a degradable biomaterial[J]. Acta Biomater., 2010, 6: 626
[20]
Guillory R J, Bowen P K, Hopkins S P, et al.Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants[J]. ACS Biomater. Sci. Eng., 2016, 2: 2355
[21]
Zhao S, McNamara C T, Bowen P K, et al. Structural characteristics and in vitro biodegradation of a novel Zn-Li alloy prepared by induction melting and hot rolling[J]. Metall. Mater. Trans., 2017, 48A: 1204
[22]
Zhao S, Seitz J M, Eifler R, et al.Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat[J]. Mater. Sci. Eng., 2017, C76: 301
[23]
Niu J L, Tang Z B, Huang H, et al.Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application[J]. Mater. Sci. Eng., 2016, C69: 407
[24]
Tang Z B, Huang H, Niu J L, et al.Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants[J]. Mater. Des., 2017, 117: 84
[25]
Sikora-Jasinska M, Mostaed E, Mostaed A, et al.Fabrication, mechanical properties and in vitro degradation behavior of newly developed Zn Ag alloys for degradable implant applications[J]. Mater. Sci. Eng., 2017, C77: 1170
[26]
Li H F, Xie X H, Zheng Y F, et al.Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr[J]. Sci. Rep., 2015, 5: 10719
[27]
Li H F, Yang X H, Zheng Y F, et al.Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr[J]. Mater. Des., 2015, 83: 95
[28]
Dambatta M S, Izman S, Kurniawan D, et al.Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn-3Mg alloy as potential biodegradable implant material[J]. Mater. Des., 2015, 85: 431
[29]
Chen Y Q, Zhang W T, Maitz M F, et al.Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline[J]. Corros. Sci., 2016, 111: 541
[30]
T?rne K, Larsson M, Norlin A, et al.Degradation of zinc in saline solutions, plasma, and whole blood[J]. J Biomed Mater Res., 2015, 104: 1141
[31]
Liu X W, Sun J K, Yang Y H, et al.In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material[J]. Mater. Lett. , 2015, 161: 53
[32]
Shearier E R, Bowen P K, He W L, et al.In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc[J]. ACS Biomater. Sci. Eng., 2016, 2: 634
[33]
T?rne K, ?rnberg A, Weissenrieder J.Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments[J]. Acta. Biomater., 2017, 48: 541
[34]
Xiang R, Ding D B, Fan L L, et al.Antibacterial mechanism and safety of zinc oxide[J]. Chin. J. Tissue Eng. Res., 2014, 18: 470(项荣, 丁栋博, 范亮亮等. 氧化锌的抗菌机制及其安全性研究进展[J]. 中国组织工程研究, 2014, 18: 470)
[35]
Zhang B, Zhou P Y, Qiu C, et al.Experimental study on the antibacterial property and cytocompatibility of medical biodegradable zinc alloy materials in vitro[J]. Chin. J. Injury Repair Wound Healing, 2016, 11: 191(张波, 周潘宇, 邱超等. 医用可降解锌合金材料抗菌性能及细胞相容性的体外实验研究[J]. 中华损伤与修复杂志(电子版), 2016, 11: 191)
[36]
Bowen P K, Drelich J, Goldman J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J]. Adv. Mater., 2013, 25: 2577
[37]
Zberg B, Uggowitzer P J, L?ffler J F.MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants[J]. Nat. Mater., 2009, 8: 887
[38]
Bowen P K, Guillory R J, Shearier E R, et al.Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents[J]. Mater. Sci. Eng., 2015, C56: 467