Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 429-434    DOI: 10.3724/SP.J.1037.2010.00448
论文 Current Issue | Archive | Adv Search |
PREPARATION AND BIOCOMPATIBILITY OF ZnHA/TiO2 HYBRID COATING
ZHANG Jingying1, 2), QI Min3), YANG Dayi3), AI Hongjun1)
1) School of Stomatology, China Medical University, Shenyang 110001
2) School of Medicine, Dalian University, Dalian 116622
3) School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
Cite this article: 

ZHANG Jingying QI Min YANG Dayi AI Hongjun. PREPARATION AND BIOCOMPATIBILITY OF ZnHA/TiO2 HYBRID COATING. Acta Metall Sin, 2011, 47(4): 429-434.

Download:  PDF(739KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A zinc-containing hydroxyapatite (ZnHA)/titania (TiO2) hybrid coating is developed to improve the mechanical character and biocompatibility of titanium (Ti) implants. The ZnHA layer on Ti via sol-gel method after treated by micro-arc oxidation (MAO) to produce an ZnHA/TiO2 porous titania coating on Ti implants. The chemical composition and physical structure of the modified surface layers were characterized by X-ray photoelectron spectroscopy (XPS) as well as scanning electron microscope (SEM). At the same time, in vitro co-culture assays were performed to evaluate the cell morphology, adhesion and proliferation of MG-63 cells to the modified titanium. The cells micro morphology on the ZnHA/TiO2 coatings were more polygonal compared with round than that on HA/TiO2 coatings by SEM. It was confirmed by Fluorescence microscopy observations that the osteoblast-like cells on the hybrid coating layer adhesion and spread favorably. The results in this work suggest that ZnHA/TiO2 hybrid coatings on Ti substrates can function as an implant with good mechanical character and biocompatibility.
Key words:  Zn      Ti      TiO2      hydroxyapatite      osteoblast      biocompatibility     
Received:  06 September 2010     
ZTFLH: 

TG146

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00448     OR     https://www.ams.org.cn/EN/Y2011/V47/I4/429

[1] Hing K A, Best S M, Bonfield W. J Mater Sci: Mater Med, 1999; 10: 135

[2] Kay J F. Dent Clin North Am, 1992; 36: 1

[3] Elliott J C. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Amsterdam: Elsevier, 1994: 387

[4] Koutsopoulos S. J Biomed Mater Res, 2002; 62: 600

[5] Ito A, Otsuka M, Kawamura H, Ikeuchi M, Ohgushi H, Sogo Y, Ichinose N. Curr Appl Phys, 2005; 5: 402

[6] Legeros R Z, Legeros J, Mijares D. US Pat, 20090068285, 2009

[7] Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N. J Inorg Biochem, 1995; 58: 49

[8] Miyaji F, Kono Y, Suyama Y. Mater Res Bull, 2005; 40: 209

[9] Hayakawa S, Ando K, Tsuru K, Osaka A. J Am Ceram Soc, 2007; 90: 565

[10] Li M O, Xiao X, Liu R, Chen C, Huang L Z. J Mater Sci: Mater Med, 2008; 19: 797

[11] Ramaswamy Y, Wu C T, Zhou H, Zreiqat H. J Acta Biomaterial, 2008; 4: 1487

[12] Yao Z Q, Ivanisenko Y, Diemant T, Caron A, Chuvilin A, Jiang J Z, Valiev R Z, Qi M, Fecht H J. Acta Biomater, 2010; 6: 2816

[13] Cheng K, WengWJ, Han G R, Du P Y, Shen G, Yang J, Ferreira J M F. Mater Chem Phys, 2003; 78: 767

[14] Le Gue’hennec L, Soueidan A, Layrolle P, Amouriq Y S. Dent Mater, 2007; 23: 844

[15] Buser D, Schenk R K, Steinemann S, Fiorellini J P, Fox C H, Stich H. J Biomed Mater Res, 1991; 25: 889

[16] Albrektsson T, Wennerberg A. Int J Prosthodont, 2004; 17: 536

[17] Wang Y M, Liang B L, Lei T Q, Guo L X. Surf Coat Technol, 2006; 201: 82

[18] Li L H, Kong Y M, Kim H W, Kim Y W, Kim H E, Heo S J, Koak J Y. Biomaterials, 2004; 25: 2867

[19] Ryu H S, Song W H, Hong S H. Surf Coat Technol, 2008; 202: 1853

[20] Nie X, Leyland A, Matthews A, Jiang J C, Meletis E I. J Biomed Mater Res, 2001; 57: 612

[21] Vaquila I, Vergara L I, Paaaeggi M C G, Vidal R A, Ferron J. Surf Coat Technol, 1999; 122: 67

[22] de Carlos A, Borrajo J P, Serra J, Gonzalez P, Leon B. J Mater Sci: Mater Med, 2006; 17: 523

[23] Yamamoto A, Honma R, Sumita M. J Biomed Mater Res, 1998; 39: 331

[24] Beyersmann D, Haase H. Biomaterials, 2001; 14: 331

[25] Yamasaki S, Sakata–Sogawa K, Hasegawa A, Suzuki T, Kaku K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K, Hirano T. J Cell Biology, 2007; 177: 637

[26] Yang X F, Xi T F. J Biomed Eng, 2001; 18: 123
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[6] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[7] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[8] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[9] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[10] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[11] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[12] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[13] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[14] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[15] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
No Suggested Reading articles found!