Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (10): 1181-1196    DOI: 10.11900/0412.1961.2017.00259
Orginal Article Current Issue | Archive | Adv Search |
Development in Biocompatibility of Biodegradable Magnesium-Based Metals
Ying ZHAO1(), Lilan ZENG1, Tao LIANG1,2
1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Download:  HTML  PDF(4307KB) 
Export:  BibTeX | EndNote (RIS)      

Magnesium-based metals become novel biodegradable implanting material and present good clinical application prospect due to their good biocompatibility, mechanical properties matching with bone tissue as well as absorbable and biodegradable properties in human body. They are expected to replace traditional medical metals such as stainless steel and titanium alloy in the area of orthopaedics and cardiovascular stent. In this paper, the current research status about the biocompatibility of magnesium based metals both at home and abroad in recent years has been reviewed. In vitro and in vivo cytocompatibility, hemocompatibility and histocompatibility have been mentioned from aspects of alloying and surface modification. The clinical application and development tendencies for magnesium based metals are also proposed.

Key words:  magnesium-based metal      degradation      cytocompatibility      hemocompatibility      histocompatibility     
Received:  30 June 2017     
ZTFLH:  R318.08  
Fund: Supported by National Natural Science Foundation of China (Nos.81572113 and 51501218), Natural Science Foundation of Guangdong Province (No.2014A030310129), Shenzhen Science and Technology Research Funding (Nos.JCYJ20160229195249481, JCYJ20160429185449249 and JCYJ20160608153641020), Shenzhen-Hong Kong Technology Cooperation Funding Scheme (No.SGLH20150213143207910) and Shenzhen Peacock Programs (No.110811003586331)

Cite this article: 

Ying ZHAO, Lilan ZENG, Tao LIANG. Development in Biocompatibility of Biodegradable Magnesium-Based Metals. Acta Metall Sin, 2017, 53(10): 1181-1196.

URL:     OR

Alloy Cell viability / % Hemolysis rate / %
L-929 Human primitive MC3T3-E1 HUVECs MG63
Rapid solidified Mg-3Ca[9] >90
As-cast Mg-5Zn-1Ca[10] 100
As-extruded Mg-1Ca[11] >90
As-cast Mg-0.5Sr[14] >95
As-cast Mg-1Sr[19] 96.3 2.54
As-rolled pure Mg[19] 98.3 7.13
Backward extruded Mg-1Zn-0.8Sr[22] >90
As-cast Mg-1.38Si-0.5Sr-0.6Ca[23] >100
As-extruded Mg-6%Zn[29] >80
As-cast Mg-1Ca-0.5Sr-6Zn[30] >80
Sub-rapid solidified Mg-1Sn[36] >100
Sub-rapid solidified Mg-3Sn[36] >100
As-cast Mg-0.03Cu[45] >100 125
Mg-Nd-Zn-Zr[49] >75
Table 1  Cell viabilities and hemolysis rates of different mgnesium-based metals[9-11,14,19,22,23,29,30,36,45,49]
Material In vitro In vivo
Corrosion Hemolysis Cytocompatibility Size Implant Corrosion rate New bone
rate rate mm duration mma-1 formation
mma-1 % (Volume loss) (Yes/No)
JDBM[55] 0.337 52.0
MgF2-coating JDBM[55] 0.253 10.1
MgF2-coated Mg-0.8Ca[56] ?2.5×25 3 weeks (8.54%) Yes
6 weeks (25.33%) Yes
LAE442[57] ?3×5 12 weeks 0.31±0.06
MgF2-coated LAE442[57] ?3×5 12 weeks 0.13±0.03
Mg-3Zn-0.8Zr[58] ?3×10 3 months (37.02%) Yes
MgF2-coated Mg-3Zn-0.8Zr[58] ?3×10 3 months (23.85%) Yes
AZ31B[59] ?2×7 3 months Yes
F-AZ31B[59] ?2×7 3 months Yes
Mg-Zn-Zr[60] 0.92 ?3.5×15 6 months 0.861±0.021 Yes
MgF2-coated Mg-Zn-Zr[60] 0.45 ?3.5×15 6 months 0.516±0.015 Yes
AZ31[61] 1.94
FAZ31[61] 1.18
Mg[62] ?4×10 4 weeks Yes
HA/MgF2-coated Mg[62] ?4×10 4 weeks Yes
Table 2  Influences of HF surface modification on degradation behavior and biocompatibility of magnesium- based metals in vitro and in vivo[55-62]
Material In vitro In vivo
Hemolysis Cytocompatibility Size Implant site Implant Weight New bone
rate mm duration loss formation
% % (Yes/No)
AZ31[64] ?1×5 Rat femur 12 weeks 33 Yes
β-TCP Coating AZ31[64] ?1×5 Rat femur 12 weeks 17 Yes
JDBM [65] >70% 10×10×1 Rat subcutaneous 40 d >20
HT3#-JDBM[65] <6% 10×10×1 Rat subcutaneous 40 d <10
HT2h-Mg[66] ?2.5×10 Rabbit femur 8 weeks Yes
HT24h-Mg[66] ?2.5×10 Rabbit femur 8 weeks Yes
Table 3  Influences of hydrothermal treatment on degradation behavior and biocompatibility of magnesium-based metals in vitro and in vivo[64-66]
Material Electrolyte MAO Cytocompatibility Hemolysis rate
parameter MG63 L-929 BMSCs MC3T3-E1
MAO-Mg-1Ca[67] Na2SiO3, NaOH 400 V, 10 min
ZK60[68] Na2SiO39H2O, 450 V, 5 min 6.79%±2.88%
MAO-ZK60[68] KOH, KF 0.39%±0.44%
ZK60[69] 28.78%
MAO-ZK60[69] Na2SiO39H2O, 370 V, 5 min 1.04%
Mg-1.0Zn-1.0Ca[70] 24.58%±1.82%
MAO-Mg-1.0Zn-1.0Ca[70] NaOH, Na4SiO4, 400 V, 5 min 2.25%±0.23%
WE42[71] 50.37%±0.42%
MAO/PLLA-WE42[71] NaOH, Na2SiO3 40 min 1.79%±0.67%
AZ31[72] 93.290%±0.782%
MAO/PLLA-AZ31[72] Na2SiO39H2O, 50 mAcm-2, 0.806%±0.771%
NaOH, NaF 15 min
PEO/PCL-AZ31[73] Na2SiO39H2O,
KOH, KF2H2O 0.4 mAcm-2, 30 min
Table 4  In vitro evaluations of biocompatibility and hemolysis rate of MAO magnesium-based metals[67-73]
Fig.1  NO released of human umbilical vein endothelial cells (EA.hy926) (a) and rodent vascular smooth muscle cells (VSMC) (b) in the culture media for bare MgZnYNd, MgZnYNd-P, MgZnYNd-A-P and MgZnYNd-B-A-P samples (Dulbecco's modified eagle medium (DMEM) with serum worked as blank control)[79]
Fig.2  NO release from VSMC cells cultured in the extract of bare magnesium, 2%-Phe-PEA-Mg, 4%-Phe-PEA-Mg and 2%PLGA-Mg samples (indirect assay) and onto bare magnesium, 2%-Phe-PEA-Mg, 4%-Phe-PEA-Mg and 2%PLGA-Mg samples (direct assay) over a 24 h incubation period (DMEM with serum acted as a blank control)[83]
Fig.3  Hemolysis rate of bare MgZnYNd, PLGA-coated MgZnYNd, and 6-Arg-6 PEUU-coated MgZnYNd at different A/G ratios (a), NO production of human umbilical vein endothelial cell (HUVEC) cultured onto Arg-PEUU-coated MgZnYNd at different Arg to GAE feed ratios for 24 h (b) (PLGA-coated and bare MgZnYNd served as the biomaterial controls along with a DMEM- and serum-treated tissue culture plate as the blank control)[84]
Fig.4  Micro-CT 2D reconstruction images of uncoated Mg-Zn-Ca alloy and Ca-def HA coated Mg-Zn-Ca alloy after implantation of 8, 12, 18 and 24 weeks (a), histological photographs of uncoated Mg-Zn-Ca alloy and Ca-def HA coated Mg-Zn-Ca alloy after implantation of 18 and 24 weeks (HE stained) (b)[94]
Fig.5  Micro-CT images of bare Mg, MgCP30 and MgCP60 samples after 0, 4, 8, and 12 weeks post-operation (a), histological photographs of HE stained sections of the tissues around bare Mg, MgCP30 and MgCP60 after 4, 8 and 12 weeks post-operation (b)[101]
Fig.6  Micro-CT of AZ91 (a) and Al2O3-treated AZ91 (b) immediately after surgery and 1, 2, 3, 4 and 8 weeks of post-operation (Yellow arrows showed new bone formation), the percentage changes in bone volume of AZ91 and Al2O3- treated AZ91 after surgery at different times (c), Micro-CT 3D reconstruction of AZ91 and Al2O3- treated AZ91 samples after 2 months of post-operation (d), Giemsa-stained hard tissue sections of AZ91 (e) and Al2O3-treated AZ91 (f) after 8 weeks of post-operation (Black arrows indicated newly formed bones and red arrows indicated osteoblast-like cells)[109]
[1] Chen Y J, Xu Z G, Smith C, et al.Recent advances on the development of magnesium alloys for biodegradable implants[J]. Acta Biomater., 2014, 10: 4561
[2] Ding Y F, Wen C E, Hodgson P, et al.Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: A review[J]. J. Mater. Chem., 2014, 2B: 1912
[3] Agarwal S, Curtin J, Duffy B, et al.Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications[J]. Mater. Sci. Eng., 2016, C68: 948
[4] Li X, Liu X M, Wu S L, et al.Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface[J]. Acta Biomater., 2016, 45: 2
[5] Kim W C, Kim J G, Lee J Y, et al.Influence of Ca on the corrosion properties of magnesium for biomaterials[J]. Mater. Lett., 2008, 62: 4146
[6] Wan Y Z, Xiong G Y, Luo H L, et al.Preparation and characterization of a new biomedical magnesium-calcium alloy[J]. Mater. Des., 2008, 29: 2034
[7] Rad H R B, Idris M H, Kadir M R A, et al. Microstructure analysis and corrosion behavior of biodegradable Mg-Ca implant alloys[J]. Mater. Des., 2012, 33: 88
[8] Li Y C, Hodgson P D, Wen C E.The effects of calcium and yttrium additions on the microstructure, mechanical properties and biocompatibility of biodegradable magnesium alloys[J]. J. Mater. Sci., 2011, 46: 365
[9] Gu X N, Li X L, Zhou W R, et al.Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material[J]. Biomed. Mater., 2010, 5: 035013
[10] Yin P, Li N F, Lei T, et al.Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys[J]. J. Mater. Sci. Mater. Med., 2013, 24: 1365
[11] Li Z J, Gu X N, Lou S Q, et al.The development of binary Mg-Ca alloys for use as biodegradable materials within bone[J]. Biomaterials, 2008, 29: 1329
[12] Erdmann N, Angrisani N, Reifenrath J, et al.Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: A comparative in vivo study in rabbits[J]. Acta Biomater., 2011, 7: 1421
[13] Krause A, von der H?h N, Bormann D, et al. Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae[J]. J. Mater. Sci., 2010, 45: 624
[14] Bornapour M, Muja N, Shum-Tim D, et al.Biocompatibility and biodegradability of Mg-Sr alloys: The formation of Sr-substituted hydroxyapatite[J]. Acta Biomater., 2013, 9: 5319
[15] Brar H S, Wong J, Manuel M V.Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials[J]. J. Mech. Behav. Biomed. Mater., 2012, 7: 87
[16] Seeman E, Vellas B, Benhamou C, et al.Strontium ranelate reduces the risk of vertebral and nonvertebral fractures in women eighty years of age and older[J]. J. Bone Miner. Res., 2006, 21: 1113
[17] Meunier P J, Roux C, Seeman E, et al.The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis[J]. New Engl. J. Med., 2004, 350: 459
[18] Fan Y, Wu G H, Zhai C Q. Effect of strontium on mechanical properties and corrosion resistance of AZ91D [J]. Mater. Sci. Forum, 2007, 546-549: 567
[19] Gu X N, Xie X H, Li N, et al.In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal[J]. Acta Biomater., 2012, 8: 2360
[20] Guan R G, Cipriano A F, Zhao Z Y, et al.Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications—Alloy processing, microstructure, mechanical properties, and biodegradation[J]. Mater. Sci. Eng., 2013, C33: 3661.
[21] Tie D, Guan R G, Liu H N, et al.An in vivo study on the metabolism and osteogenic activity of bioabsorbable Mg-1Sr alloy[J]. Acta Biomater., 2016, 29: 455
[22] Li H, Peng Q M, Li X J, et al.Microstructures, mechanical and cytocompatibility of degradable Mg-Zn based orthopedic biomaterials[J]. Mater. Des., 2014, 58: 43
[23] Wang W D, Han J J, Yang X, et al.Novel biocompatible magnesium alloys design with nutrient alloying elements Si, Ca and Sr: Structure and properties characterization[J]. Mater. Sci. Eng., 2016, B214: 26
[24] Wang C, Lin K L, Chang J, et al.Osteogenesis and angiogenesis induced by porous β-CaSiO3/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways[J]. Biomaterials, 2013, 34: 64
[25] Jin G D, Qin H, Cao H L, et al.Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium[J]. Biomaterials, 2014, 35: 7699
[26] Cai S H, Lei T, Li N F, et al.Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys[J]. Mater. Sci. Eng., 2012, C32: 2570
[27] Yu S, Wang X H, Chen Y G, et al.In vitro and in vivo evaluation of effects of Mg-6Zn alloy on tight junction of intestinal epithelial cell[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 3760
[28] Zhang S Y, Zheng Y, Zhang L M, et al.In vitro and in vivo corrosion and histocompatibility of pure Mg and a Mg-6Zn alloy as urinary implants in rat model[J]. Mater. Sci. Eng., 2016, C68: 414
[29] Yan Y, Cao H W, Kang Y J, et al.Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and corrosion behavior of as-extruded Mg-Zn alloys produced by powder metallurgy[J]. J. Alloys Compd., 2017, 693: 1277
[30] Yu W L, Chen D Y, Ding Z Y, et al.Synergistic effect of a biodegradable Mg-Zn alloy on osteogenic activity and anti-biofilm ability: An in vitro and in vivo study[J]. RSC Adv., 2016, 6: 45219
[31] He G P, Wu Y H, Zhang Y, et al.Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial properties[J]. J. Mater. Chem., 2015, 3B: 6676
[32] Xia Y H, Zhang B P, Wang Y, et al.In-vitro cytotoxicity and in-vivo biocompatibility of as-extruded Mg-4.0Zn-0.2Ca alloy[J]. Mater. Sci. Eng., 2012, C32: 665
[33] Qu Y, Kang M Y, Dong R P, et al.Evaluation of a new Mg-Zn-Ca-Y alloy for biomedical application[J]. J. Mater. Sci. Mater. Med., 2015, 26: 16
[34] Chen C J, Chen C W, Wu M M, et al.Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water[J]. Br. J. Cancer, 1992, 66: 888
[35] Hou L D, Li Z, Zhao H, et al.Microstructure, mechanical properties, corrosion behavior and biocompatibility of as-extruded biodegradable Mg-3Sn-1Zn-0.5Mn alloy[J], J. Mater. Sci. Technol., 2016, 32: 874
[36] Zhao C Y, Pan F S, Zhao S, et al.Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification[J]. Mater. Sci. Eng., 2015, C54: 245
[37] Zhao C Y, Pan F S, Zhao S, et al.Preparation and characterization of as-extruded Mg-Sn alloys for orthopedic applications[J]. Mater. Des., 2015, 70: 60
[38] Harris E D.A requirement for copper in angiogenesis[J]. Nutr. Rev., 2004, 62: 60
[39] Harris E D.Basic and clinical aspects of copper[J]. Crit. Rev. Clin. Lab. Sci., 2003, 40: 547
[40] Wilson T, Katz J M, Gray D H.Inhibition of active bone resorption by copper[J]. Calcif. Tissue Int., 1981, 33: 35
[41] Gérard C, Bordeleau L J, Barralet J, et al.The stimulation of angiogenesis and collagen deposition by copper[J]. Biomaterials, 2010, 31: 824
[42] Strause L, Saltman P, Glowacki J.The effect of deficiencies of manganese and copper on osteoinduction and on resorption of bone particles in rats[J]. Calcif. Tissue Int., 1987, 41: 145
[43] Sen C K, Khanna S, Venojarvi M, et al.Copper-induced vascular endothelial growth factor expression and wound healing[J]. Am. J. Physiol. Heart Circ. Physiol., 2002, 282: H1821
[44] Hu G F.Copper stimulates proliferation of human endothelial cells under culture[J]. J. Cell. Biochem., 1998, 69: 326
[45] Liu C, Fu X K, Pan H B, et al.Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects[J]. Sci. Rep., 2016, 6: 27374
[46] Li Y, Liu L N, Wan P, et al.Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations[J]. Biomaterials, 2016, 106: 250
[47] Zhang X B, Yuan G Y, Mao L, et al.Biocorrosion properties of as-extruded Mg-Nd-Zn-Zr alloy compared with commercial AZ31 and WE43 alloys[J]. Mater. Lett., 2012, 66: 209
[48] Zong Y, Yuan G Y, Zhang X B, et al.Comparison of biodegradable behaviors of AZ31 and Mg-Nd-Zn-Zr alloys in Hank's physiological solution[J]. Mater. Sci. Eng., 2012, B177: 395
[49] Wang Y P, He Y H, Zhu Z J, et al.In vitro degradation and biocompatibility of Mg-Nd-Zn-Zr alloy[J]. Chin. Sci. Bull., 2012, 57: 2163
[50] Wang Y P, Zhu Z J, He Y H, et al.In vivo degradation behavior and biocompatibility of Mg-Nd-Zn-Zr alloy at early stage[J]. Int. J. Mol. Med., 2012, 29: 178
[51] Wang Y, Ouyang Y, Peng X, et al.Effects and degradable Mg-Nd-Zn-Zr alloy on osteoblastic cell function[J]. Int. J. Immunopathol. Pharmacol., 2012, 25: 597
[52] Liao Y, Ouyang Y M, Niu J L, et al.In vitro response of chondrocytes to a biodegradable Mg-Nd-Zn-Zr alloy[J]. Mater. Lett., 2012, 83: 206
[53] Wang Y P, Ouyang Y M, He Y H, et al.Biocompatibility of Mg-Nd-Zn-Zr alloy with rabbit blood[J]. Chin. Sci. Bull., 2013, 58: 2903
[54] Zheng Y F, Qin L, Yang K, et al.Biodegradable Metals [M]. Beijing: Science Press, 2016: 143(郑玉峰, 秦岭, 杨柯等. 可降解金属 [M]. 北京: 科学出版社, 2016: 143)
[55] Mao L, Yuan G Y, Niu J L, et al.In vitro degradation behavior and biocompatibility of Mg-Nd-Zn-Zr alloy by hydrofluoric acid treatment[J]. Mater. Sci. Eng., 2013, C33: 242
[56] Thomann M, Krause C, Angrisani N, et al.Influence of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on degradation in a rabbit model[J]. J. Biomed. Mater. Res., 2010, 93A: 1609
[57] Witte F, Fischer J, Nellesen J, et al.In vivo corrosion and corrosion protection of magnesium alloy LAE442[J]. Acta Biomater., 2010, 6: 1792
[58] Sun J E, Wang J B, Jiang H F, et al.In vivo comparative property study of the bioactivity of coated Mg-3Zn-0.8Zr alloy[J]. Mater. Sci. Eng., 2013, C33: 3263
[59] Sun W, Zhang G D, Tan L L, et al.The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model[J]. Mater. Sci. Eng., 2016, C63: 506
[60] Li Z, Sun S Z, Chen M F, et al.In vitro and in vivo corrosion, mechanical properties and biocompatibility evaluation of MgF2-coated Mg-Zn-Zr alloy as cancellous screws[J]. Mater. Sci. Eng., 2017, C75: 1268
[61] Yu W L, Zhao H K, Ding Z Y, et al.In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration[J]. Colloids Surf. Biointerfaces, 2017, 149B: 330
[62] Jo J H, Kang B G, Shin K S, et al.Hydroxyapatite coating on magnesium with MgF2 interlayer for enhanced corrosion resistance and biocompatibility[J]. J. Mater. Sci. Mater. Med., 2011, 22: 2437
[63] Drynda A, Seibt J, Hassel T, et al.Biocompatibility of fluoride-coated magnesium-calcium alloys with optimized degradation kinetics in a subcutaneous mouse model[J]. J. Biomed. Mater. Res., 2013, 101A: 33
[64] Chai H W, Guo L, Wang X T, et al.In vitro and in vivo evaluations on osteogenesis and biodegradability of a β-tricalcium phosphate coated magnesium alloy[J]. J. Biomed. Mater. Res., 2012, 100A: 293
[65] Peng F, Li H, Wang D H, et al.Enhanced corrosion resistance and biocompatibility of magnesium alloy by Mg-Al-layered double hydroxide[J]. ACS Appl. Mater. Interfaces, 2016, 8: 35033
[66] Li B, Han Y, Li M.Enhanced osteoblast differentiation and osseointegration of a bio-inspired HA nanorod patterned pore-sealed MgO bilayer coating on magnesium[J]. J. Mater. Chem., 2016, 4B: 683
[67] Gu X N, Li N, Zhou W R, et al.Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy[J]. Acta Biomater., 2011, 7: 1880
[68] Lin X, Tan L L, Zhang Q, et al.The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating[J]. Acta Biomater., 2013, 9: 8631
[69] Yang X M, Li M, Lin X, et al.Enhanced in vitro biocompatibility/bioactivity of biodegradable Mg-Zn-Zr alloy by micro-arc oxidation coating contained Mg2SiO4[J]. Surf. Coat. Technol., 2013, 233: 65
[70] Wang D W, Cao Y, Qiu H, et al.Improved blood compatibility of Mg-1.0Zn-1.0Ca alloy by micro-arc oxidation[J]. J. Biomed. Mater. Res., 2011, 99A: 166
[71] Lu P, Cao L, Liu Y, et al.Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42[J]. J. Biomed. Mater. Res., 2011, 96B: 101
[72] Wei Z L, Tian P, Liu X Y, et al.In vitro degradation, hemolysis, and cytocompatibility of PEO/PLLA composite coating on biodegradable AZ31 alloy[J]. J. Biomed. Mater. Res., 2015, 103: 342
[73] Tian P, Xu D M, Liu X Y.Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy[J]. Colloid Surf. Biointerfaces, 2016, 141B: 327
[74] Lin X, Tan L L, Wang Q, et al.In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model[J]. Mater. Sci. Eng., 2013, C33: 3881
[75] Gao J H, Shi X Y, Yang B, et al.Fabrication and characterization of bioactive composite coatings on Mg-Zn-Ca alloy by MAO/sol-gel[J]. J. Mater. Sci. Mater. Med., 2011, 22: 1681
[76] Chen S, Guan S K, Li W, et al.In vivo degradation and bone response of a composite coating on Mg-Zn-Ca alloy prepared by microarc oxidation and electrochemical deposition[J]. J. Biomed. Mater. Res., 2012, 100B: 533
[77] Conceicao T F, Scharnagl N, Blawert C, et al.Corrosion protection of magnesium alloy AZ31 sheets by spin coating process with poly (ether imide) [PEI][J]. Corros. Sci., 2010, 52: 2066
[78] Xu L P, Yamamoto A.Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating[J]. Colloid Surf. Biointerfaces, 2012, 93B: 67
[79] Liu J, Xi T F.Enhanced anti-corrosion ability and biocompatibility of PLGA coatings on MgZnYNd alloy by BTSE-APTES pre-treatment for cardiovascular stent[J]. J. Mater. Sci. Technol., 2016, 32: 845
[80] Wong H M, Yeung K W K, Lam K O, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants[J]. Biomaterials, 2010, 31: 2084
[81] Zeng R, Dietzel W, Witte F, et al.Progress and challenge for magnesium alloys as biomaterials[J]. Adv. Eng. Mater., 2008, 10: B3
[82] Kim S B, Jo J H, Lee S M, et al.Use of a poly (ether imide) coating to improve corrosion resistance and biocompatibility of magnesium (Mg) implant for orthopedic applications[J]. J. Biomed. Mater. Res., 2013, 101A: 1708
[83] Liu J, Liu X L, Xi T F, et al.A novel pseudo-protein-based biodegradable coating for magnesium substrates: In vitro corrosion phenomena and cytocompatibility[J]. J. Mater. Chem., 2015, 3B: 878
[84] Liu J, Wang P, Chu C C, et al.A novel biodegradable and biologically functional arginine-based poly (ester urea urethane) coating for Mg-Zn-Y-Nd alloy: Enhancement in corrosion resistance and biocompatibility[J]. J. Mater. Chem., 2017, 5B: 1787
[85] Zomorodian A, Garcia M P, Silva T M, et al.Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy[J]. Acta Biomater., 2013, 9: 8860
[86] Agarwal S, Morshed M, Labour M N, et al.Enhanced corrosion protection and biocompatibility of a PLGA-silane coating on AZ31 Mg alloy for orthopaedic applications[J]. RSC Adv., 2016, 6: 113871
[87] Chen Y Q, Zhao S, Liu B, et al.Corrosion-controlling and osteo-compatible Mg ion-integrated phytic acid (Mg-PA) coating on magnesium substrate for biodegradable implants application[J]. ACS Appl. Mater. Interfaces, 2014, 6: 19531
[88] Zhao S, Chen Y Q, Liu B, et al.A dual-task design of corrosion-controlling and osteo-compatible hexamethylenediaminetetrakis- (methylene phosphonic acid) (HDTMPA) coating on magnesium for biodegradable bone implants application[J]. J. Biomed. Mater. Res., 2015, 103: 1640
[89] Liu X L, Zhen Z, Liu J, et al.Multifunctional MgF2/Polydopamine coating on Mg alloy for vascular stent application[J]. J. Mater. Sci. Technol., 2015, 31: 733
[90] Song Y, Zhang S X, Li J A, et al.Electrodeposition of Ca-P coatings on biodegradable Mg alloy: In vitro biomineralization behavior[J]. Acta Biomater., 2010, 6: 1736
[91] Jamesh M, Kumar S, Narayanan T S N S. Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications[J]. J. Coat. Technol. Res., 2012, 9: 495
[92] Bakhsheshi-Rad H R, Idris M H, Abdul-Kadir M R. Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2 composite coating on biodegradable Mg-Ca-Zn alloy[J]. Surf. Coat. Technol., 2013, 222: 79
[93] Zhao Q M, Guo X, Dang X Q, et al.Preparation and properties of composite MAO/ECD coatings on magnesium alloy[J]. Colloid Surf. Biointerfaces, 2013, 102B: 321
[94] Wang H X, Guan S K, Wang Y S, et al.In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application[J]. Colloid Surf. Biointerfaces, 2011, 88B: 254
[95] Carlisle E M.Silicon: A requirement in bone formation independent of Vitamin D1[J]. Calcified Tissue Int., 1981, 33: 27
[96] Qiu X, Wan P, Tan L L, et al.Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition[J]. Mater. Sci. Eng., 2014, C36: 65
[97] Li J A, Han P, Ji W P, et al.The in vitro indirect cytotoxicity test and in vivo interface bioactivity evaluation of biodegradable FHA coated Mg-Zn alloys[J]. Mater. Sci. Eng., 2011, B176: 1785
[98] Sun J D, Liu X Y, Meng L, et al.One-step electrodeposition of self-assembled colloidal particles: A novel strategy for biomedical coating[J]. Langmuir, 2014, 30: 11002
[99] Sun J D, Zhu Y, Meng L, et al.A biodegradable coating based on self-assembled hybrid nanoparticles to control the performance of magnesium[J]. Macromol Chem. Phys., 2015, 216: 1952
[100] Sun J D, Zhu Y, Meng L, et al.Controlled release and corrosion protection by self-assembled colloidal particles electrodeposited onto magnesium alloys[J]. J. Mater. Chem., 2015, 3B: 1667
[101] Sun J D, Zhu Y, Meng L, et al.Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance[J]. Acta Biomater., 2016, 45: 387
[102] Zhao Y, Wu G S, Pan H B, et al.Formation and electrochemical behavior of Al and O plasma-implanted biodegradable Mg-Y-RE alloy[J]. Mater. Chem. Phys., 2012, 132: 187
[103] Zhao Y, Wu G S, Lu Q Y, et al.Improved surface corrosion resistance of WE43 magnesium alloy by dual titanium and oxygen ion implantation[J]. Thin Solid Films, 2013, 529: 407
[104] Jamesh M I, Wu G S, Zhao Y, et al.Effects of zirconium and nitrogen plasma immersion ion implantation on the electrochemical corrosion behavior of Mg-Y-RE alloy in simulated body fluid and cell culture medium[J]. Corros. Sci., 2014, 86: 239
[105] Xu R Z, Yang X B, Jiang J, et al.Effects of chromium ion implantation voltage on the corrosion resistance and cytocompatibility of dual chromium and oxygen plasma-ion-implanted biodegradable magnesium[J]. Surf. Coat. Technol., 2013, 235: 875
[106] Wu G S, Gong L, Feng K, et al.Rapid degradation of biomedical magnesium induced by zinc ion implantation[J]. Mater. Lett., 2011, 65: 661
[107] Jin W H, Wu G S, Gao A, et al.Hafnium-implanted WE43 magnesium alloy for enhanced corrosion protection and biocompatibility[J]. Surf. Coat. Technol., 2016, 306: 11
[108] Jin W H, Wu G S, Feng H Q, et al.Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation[J]. Corros. Sci., 2015, 94: 142
[109] Wong H M, Zhao Y, Tam V, et al.In vivo stimulation of bone formation by aluminum and oxygen plasma surface-modified magnesium implants[J]. Biomaterials, 2013, 34: 9863
[110] Zhao Y, Jamesh M I, Li W K, et al.Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys[J]. Acta Biomater., 2014, 10: 544
[111] Cheng M Q, Qiao Y Q, Wang Q, et al.Dual ions implantation of zirconium and nitrogen into magnesium alloys for enhanced corrosion resistance, antimicrobial activity and biocompatibility[J]. Colloids Surf. Biointerfaces, 2016, 148B: 200
[1] Luning WANG, Yao MENG, Lijun LIU, Chaofang DONG, Yu YAN. Research Progress on Biodegradable Zinc-Based Biomaterials[J]. 金属学报, 2017, 53(10): 1317-1322.
[2] Guangyin YUAN, Jialin NIU. Research Progress of Biodegradable Magnesium Alloys for Orthopedic Applications[J]. 金属学报, 2017, 53(10): 1168-1180.
[3] Yufeng ZHENG, Hongtao YANG. Research Progress in Biodegradable Metals forStent Application[J]. 金属学报, 2017, 53(10): 1227-1237.
[4] ZOU Guangping LU Jie CAO Yang LIU Baojun. BENDING FATIGUE DAMAGE MODELS OF STEEL HONEYCOMB SANDWICH PANELS[J]. 金属学报, 2011, 47(9): 1181-1187.
[6] XU Wenli LU Xi TAN Lili YANG Ke. STUDY ON PROPERTIES OF A NOVEL BIODEGRADABLE Fe–30Mn–1C ALLOY[J]. 金属学报, 2011, 47(10): 1342-1347.
[7] . Photocatalytic Properties of TiO2 Thin Films Prepared by Microarc Oxidation[J]. 金属学报, 2008, 44(10): 1238-1242 .
No Suggested Reading articles found!