Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (9): 1181-1187    DOI: 10.3724/SP.J.1037.2011.00253
论文 Current Issue | Archive | Adv Search |
BENDING FATIGUE DAMAGE MODELS OF STEEL HONEYCOMB SANDWICH PANELS
ZOU Guangping, LU Jie, CAO Yang, LIU Baojun
College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001
Cite this article: 

ZOU Guangping LU Jie CAO Yang LIU Baojun. BENDING FATIGUE DAMAGE MODELS OF STEEL HONEYCOMB SANDWICH PANELS. Acta Metall Sin, 2011, 47(9): 1181-1187.

Download:  PDF(1243KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The four-point bending fatigue behaviors of steel honeycomb sandwich panels were investigated in this paper. The fatigue tests results were presented in fatigue life (S-N) diagrams. The results show that with a load ratio of R=0.20, the fatigue properties of specimens are significantly influenced by honeycomb cell orientations. The L-direction appears more suitable for cyclic loading than W-direction, and the fatigue strengths reach 1369 and 859 N, respectively. Based on the equivalent shear modulus degradation theory, the life prediction and damage evolution models were developed. Obviously, the lives of damage initiation for L-direction specimens are 86%-90% of the total number of cycles, while 73% at high load and reduce to 48% at low load for W-direction specimens. When the cores orientations were not concerned, the second order polynomial model and exponential model can be adopted to describe the damage evolution trends at high and low load levels, respectively. While the prediction models exhibit strong material dependent.
Key words:  honeycomb sandwich      shear modulus degradation      life prediction      cumulative damage     
Received:  20 April 2011     
ZTFLH: 

V214.6

 
Fund: 

Supported by Specialized Research Fund for the Doctoral Program of Higher Education No.20092304110003)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00253     OR     https://www.ams.org.cn/EN/Y2011/V47/I9/1181

[1] Lu T J, He D P, Chen C Q, Zhao C Y, Fang D N, Wang X L. Adv Mech, 2006; 36: 517

(卢天健, 何德坪, 陈常青, 赵长颖, 方岱宁, 王晓林. 力学进展, 2006; 36: 517)

[2] Wei J F, Ji Y Z, Gong B A. Aerosp Mater Technol, 2007; 5: 8

(韦娟芳, 冀有志, 龚博安. 宇航材料工艺, 2007; 5: 8)

[3] Zhang Y C, Wang Z L, Gu J L, Zhang S L. Shipbuilding China, 2009; 50(4): 36

(张延昌, 王自力, 顾金兰, 张世联. 中国造船, 2009; 50(4): 36)

[4] Fu D M, Han J T, Liu J, Fu C G. Aviat Precis Manuf Technol, 2004; 40(3): 14

(符定梅, 韩静涛, 刘 靖, 付晨光. 航空精密制造技术, 2004; 40(3): 14)

[5] Zenkert D, Burman M. Compos Sci Technol, 2009; 69: 785

[6] Kanny K, Mahfuz H. Compos Struct, 2005; 67: 403

[7] Soni S M, Gibson R F, Ayorinde E O. Compos Sci Technol, 2009; 69: 829

[8] Jen Y M, Chang L Y. Int J Fatigue, 2008; 30: 1036

[9] Jen Y M, Chang L Y. Eng Fail Anal, 2009; 16: 1282

[10] Jen Y M, Ko C W, Lin H B. Int J Fatigue, 2009; 31: 455

[11] Mahi A El, Farooq M K, Sahraoui S, Bezazi A. Mater Design, 2004; 25: 199

[12] Belingardi G, Martella P, Peroni L. Composite, 2007; 38A: 1183

[13] Belouettar S, Abbadi A, Azari Z, Belouettar R, Freres P. Compos Struct, 2009; 87: 265

[14] Ferreira J A M, Costa J D M, Reis P N B, Richardson M O W. Compos Struct, 1999; 59: 1461

[15] Salvia M L F, Fournier P P, Vincent L. Int J Fatigue, 1997; 19: 253

[16] Hwang W, Lee C S, Park H C, Han K S. J Adv Mater, 1995; 26: 3

[17] Clark S D, Shenoi R A, Allen H G. Compos Sci Technol, 1999; 59: 471

[18] Abbadi A, Azari Z, Belouettar S, Gilgert J, Freres P. Int J Fatigue, 2010; 32: 1739

[19] Ashby M F, Evans A G, Gibson L J, Hutchinson J W, Wadley H N G, translated by Liu P S, Wang X S, Li Y X. Metal Foams: A Design Guide. Beijing: Metallurgical Industry Press, 2006: 115

(Ashby M F, Evans A G, Gibson L J, Hutchinson J W, Wadley H N G著, 刘培生, 王习述, 李言祥 \译. 泡沫金属设计指南. 北京: 冶金工业出版社, 2006: 115)
[1] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[2] YU Huichen, DONG Chengli, JIAO Zehui, KONG Fantao, CHEN Yuyong, SU Yongjun. HIGH TEMPERATURE CREEP AND FATIGUE BEHAVIOR AND LIFE PREDICTION METHOD  OF A TiAl ALLOY[J]. 金属学报, 2013, 49(11): 1311-1317.
[3] ZHANG Yingjie YAN Yunhui LI Yongqiang LI Feng . NONLINEAR DYNAMICS ANALYSIS OF ALUMINUM HONEYCOMB SANDWICH PLATE WITH COMPLETED CLAMPED SUPPORTED[J]. 金属学报, 2012, 48(8): 995-1004.
[4] XU Binshi WANG Haidou PIAO Zhongyu ZHANG Xiancheng. INVESTIGATION OF STRUCTURAL INTEGRITY AND LIFE TIME PREDICTION OF THE THERMAL SPRAYED ALLOY COATING FOR REMANUFACTURING[J]. 金属学报, 2011, 47(11): 1355-1361.
[5] . A NEW FATIGUE-CREEP LIFE PREDICTION METHODOLOGY[J]. 金属学报, 2008, 44(10): 1167-1170 .
[6] Chen Ling. Discussion of energy model for low cycle fatigue life prediction[J]. 金属学报, 2006, 42(2): 195-200 .
[7] DING Chuanfu;YU Hui; WU Xueren (Beijing Institute of Aeronautical Materials;Beijing 100095). GROWTH BEHAVIOUR OF SMALL FATIGUE CRACK AND FATIGUE-LIFE PREDICTION FOR HIGH-STRENGTH STEEL 30CrMnSiNi2A[J]. 金属学报, 1997, 33(3): 277-286.
[8] NHAO Tingshi Huazhong University of Science and Technology; Wuhan. LOW CYCLE FATIGUE LIFE AND PLASTIC STRAIN ENERGY[J]. 金属学报, 1993, 29(2): 45-48.
No Suggested Reading articles found!