|
|
BENDING FATIGUE DAMAGE MODELS OF STEEL HONEYCOMB SANDWICH PANELS |
ZOU Guangping, LU Jie, CAO Yang, LIU Baojun |
College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001 |
|
Cite this article:
ZOU Guangping LU Jie CAO Yang LIU Baojun. BENDING FATIGUE DAMAGE MODELS OF STEEL HONEYCOMB SANDWICH PANELS. Acta Metall Sin, 2011, 47(9): 1181-1187.
|
Abstract The four-point bending fatigue behaviors of steel honeycomb sandwich panels were investigated in this paper. The fatigue tests results were presented in fatigue life (S-N) diagrams. The results show that with a load ratio of R=0.20, the fatigue properties of specimens are significantly influenced by honeycomb cell orientations. The L-direction appears more suitable for cyclic loading than W-direction, and the fatigue strengths reach 1369 and 859 N, respectively. Based on the equivalent shear modulus degradation theory, the life prediction and damage evolution models were developed. Obviously, the lives of damage initiation for L-direction specimens are 86%-90% of the total number of cycles, while 73% at high load and reduce to 48% at low load for W-direction specimens. When the cores orientations were not concerned, the second order polynomial model and exponential model can be adopted to describe the damage evolution trends at high and low load levels, respectively. While the prediction models exhibit strong material dependent.
|
Received: 20 April 2011
|
|
Fund: Supported by Specialized Research Fund for the Doctoral Program of Higher Education No.20092304110003) |
[1] Lu T J, He D P, Chen C Q, Zhao C Y, Fang D N, Wang X L. Adv Mech, 2006; 36: 517(卢天健, 何德坪, 陈常青, 赵长颖, 方岱宁, 王晓林. 力学进展, 2006; 36: 517)[2] Wei J F, Ji Y Z, Gong B A. Aerosp Mater Technol, 2007; 5: 8(韦娟芳, 冀有志, 龚博安. 宇航材料工艺, 2007; 5: 8)[3] Zhang Y C, Wang Z L, Gu J L, Zhang S L. Shipbuilding China, 2009; 50(4): 36(张延昌, 王自力, 顾金兰, 张世联. 中国造船, 2009; 50(4): 36)[4] Fu D M, Han J T, Liu J, Fu C G. Aviat Precis Manuf Technol, 2004; 40(3): 14(符定梅, 韩静涛, 刘 靖, 付晨光. 航空精密制造技术, 2004; 40(3): 14)[5] Zenkert D, Burman M. Compos Sci Technol, 2009; 69: 785[6] Kanny K, Mahfuz H. Compos Struct, 2005; 67: 403[7] Soni S M, Gibson R F, Ayorinde E O. Compos Sci Technol, 2009; 69: 829[8] Jen Y M, Chang L Y. Int J Fatigue, 2008; 30: 1036[9] Jen Y M, Chang L Y. Eng Fail Anal, 2009; 16: 1282[10] Jen Y M, Ko C W, Lin H B. Int J Fatigue, 2009; 31: 455[11] Mahi A El, Farooq M K, Sahraoui S, Bezazi A. Mater Design, 2004; 25: 199[12] Belingardi G, Martella P, Peroni L. Composite, 2007; 38A: 1183[13] Belouettar S, Abbadi A, Azari Z, Belouettar R, Freres P. Compos Struct, 2009; 87: 265[14] Ferreira J A M, Costa J D M, Reis P N B, Richardson M O W. Compos Struct, 1999; 59: 1461[15] Salvia M L F, Fournier P P, Vincent L. Int J Fatigue, 1997; 19: 253[16] Hwang W, Lee C S, Park H C, Han K S. J Adv Mater, 1995; 26: 3[17] Clark S D, Shenoi R A, Allen H G. Compos Sci Technol, 1999; 59: 471[18] Abbadi A, Azari Z, Belouettar S, Gilgert J, Freres P. Int J Fatigue, 2010; 32: 1739[19] Ashby M F, Evans A G, Gibson L J, Hutchinson J W, Wadley H N G, translated by Liu P S, Wang X S, Li Y X. Metal Foams: A Design Guide. Beijing: Metallurgical Industry Press, 2006: 115(Ashby M F, Evans A G, Gibson L J, Hutchinson J W, Wadley H N G著, 刘培生, 王习述, 李言祥 \译. 泡沫金属设计指南. 北京: 冶金工业出版社, 2006: 115) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|