Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1222-1238    DOI: 10.11900/0412.1961.2016.00346
Orginal Article Current Issue | Archive | Adv Search |
RESEARCH PROGRESS ON FRICTION STIR WELDING AND PROCESSING
Peng XUE,Xingxing ZHANG,Lihui WU,Zongyi MA()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Peng XUE, Xingxing ZHANG, Lihui WU, Zongyi MA. RESEARCH PROGRESS ON FRICTION STIR WELDING AND PROCESSING. Acta Metall Sin, 2016, 52(10): 1222-1238.

Download:  HTML  PDF(10599KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper simply introduced the research progress in friction stir welding (FSW) of dissimilar materials, high melting point materials and Al matrix composites, thermal-field simulation, and friction stir processing (FSP), especially based on research results of the authors. Some hotspots like the key factor of FSW dissimilar materials and bonding mechanism on interface, microstructure evolution during FSW of steel and Ti alloys and tool development, microstructure and properties of FSW Al matrix composite joints and tool wear, heat resource model of thermal-field simulation and effect of FSW parameters on thermal-field, microstructure and properties of nano-composites and ultrafine-grained materials prepared by FSP, were summarized and discussed. At the same time, the further research and development direction in FSW are suggested.

Key words:  friction stir welding      friction stir processing      dissimilar material      high melting point material      Al matrix composite      thermal-field simulation     
Received:  01 August 2016     
ZTFLH:     
Fund: Supported by National Natural Science Foundation of China (Nos.51301178 and 51331008)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00346     OR     https://www.ams.org.cn/EN/Y2016/V52/I10/1222

Fig.1  OM images of friction stir welding (FSW) Al-Cu joint (a), SEM (b) and TEM (c) images of Al-Cu interface[24] (NZ—nugget zone)
Fig.2  Effect of welded location on joint formation of FSW Mg-steel[26](a) schematic illustration(b) steel on upper side(c) Mg on upper side
Fig.3  OM image show FSW joint of Zr-based bulk metallic glass (BMG) and 7075Al alloy (a), and TEM image show fine grains and BMG particles near the BMG/7075Al alloy interface (b) (Inset shows diffraction pattern of zone A)[29]
Fig.4  SEM images of the nugget zone of S70C steel FSW joints at different welding parameters[39] (P—pearlite phase, M—martensite phase)(a) 200 r/min, 25 mm/min (b) 200 r/min, 400 mm/min (c) 400 r/min, 25 mm/min (d) 400 r/min, 100 mm/min
Fig.5  Macrostructure (a) and EBSD maps of base material (BM) (b), upper (zone 1 in Fig.5a) (c) and lower (zone 2 in Fig.5a) (d) part in nugget of FSW high nitrogen steel joint[50] (BM—base metal, HAZ—heat affected zone, TMAZ—thermal-mechanical affected zone, arrows in Fig.5c show the low angle grain boundaries)
Fig.6  Superplastic behavior and morphologies of NZ in FSW Ti-6Al-4V joint[67,77]
(a) variation of elongation with initial strain rate at different temperatures(b) tensile specimens pulled to failure at 925 ℃ at different strain rates(c) TEM and (d) OM images showing microstructures before and after being pulled to failure at 925 ℃ and 1×10-2 s-1
Fig.7  Photographs showing the polycrystalline cubic boron nitride (PCBN) and W-Re tool designs used in the welding trials[80]
Fig.8  Evolution of tool wear in FSW of 20%Al2O3/6061Al (volume fraction) composite at 1000 r/min and travel speeds of 3 mm/s (a) and 9 mm/s (b) (Distances traversed by tool in meters are indicated in the images)[85]
Fig.9  Hardness profiles of 17%SiC/2009Al (volume fraction) joints at welding speeds of 50, 200 and 800 mm/min[91] (RS—retreating side, AS—advancing side)
Fig.10  Variation of transient temperature for rotational speed of 500 r/min (lines: simulation results, symbols: test data) [106]
(a) top surface (b) bottom surface
Fig.11  Comparison between calculated 370 ℃ temperature contours and tensile fracture locations of FSW 6061Al-T651 joint at different parameters[109,110]
(a) rotation rate (b) welding speed
Fig.12  TEM images of FSP-rolled CNT/2009Al composite[123] (FSP—friction stir processing, CNT—carbon nanotube)
(a) CNT distribution (b) HRTEM image of CNT/Al interface
Fig.13  True stress-strain curves (a, c) and comparison of various ultrafine-grained (b, d) of FSP Cu (a, b) and Cu-Al alloys (c, d) (ECAP—equal-channel angular pressing, CG—coarse grain, CR—cold rolling, DPD—dynamic plastic deformation, A—annealing, ED—electrolytic deposition, HPT—high-pressure torsin, SFE—stacking fault energy)
Fig.14  SEM micrographs of the damaged surfaces of CG Cu (a, b) and FSP ultrafine-grained Cu specimens (c, d)[135] (Δσ—stress amplitude, Nf—cycle to failure)
[1] Thomas W M, Nicholas E D, Needham J C.UK Pat, 9125978.8, 1991
[2] David S A.Science, 1992; 257: 497
[3] Sato Y.J Jpn Weld Soc, 2015; 84: 573
[4] Mishra R S, Ma Z Y.Mater Sci Eng, 2005; R50: 1
[5] Ma Z Y.Metall Mater Trans, 2008; 39A: 642
[6] Kumar N, Yuan W, Mishra R S.Friction Stir Welding of Dissimilar Alloys and Materials. Oxford: Elsiver Inc., 2015: 1
[7] Okamoto H.Desk Handbook Phase Diagrams for Binary Alloys. Ohio: ASM International, 2000: 36
[8] Fu B L, Qin G L, Li F, Meng X M, Zhang J Z, Wu C S.J Mater Process Technol, 2015; 218: 38
[9] Chen Y H, Xie J L, Ge J W, Cao W M.Netshape Form Eng, 2015; 7(5): 25
[9] (陈玉华, 谢吉林, 戈军委, 曹文明. 精密成形工程, 2015; 7(5): 25)
[10] Lee K, Kwon E P.Trans Nonferrous Met Soc China, 2014; 24: 2374
[11] Buffa G, Baffari D, Caro A D, Fratini L.Sci Technol Weld Join, 2015; 20: 271
[12] Kostka A, Coelho R S, dos Santos J.Scr Mater, 2009; 60: 953
[13] Zhao Y, Lu Z P, Yan K, Huang L Z.Mater Des, 2015; 65: 675
[14] Mofid M A, Abdollah-Zadeh A, Ghaini F M, Gür C H.Metall Mater Trans, 2012; 43A: 5106
[15] Xu R Z.Postdoctoral Report, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2016
[15] (徐荣正. 中国科学院金属研究所博士后出站报告, 沈阳, 2016)
[16] Chang W S, Rajesh S R, Chun C K.J Mater Sci Technol, 2011; 27: 199
[17] Liu X, Lan S H, Ni J.J Mater Process Technol, 2015; 219: 112
[18] Xiong J T, Li J L, Qian J W, Zhang F S, Huang W D.Sci Technol Weld Join, 2012; 17: 196
[19] Wu A P, Song Z H, Nakata K, Liao J S, Zhou L.Mater Des, 2015; 71: 85
[20] Li B, Zhang Z H, Shen Y F, Hu W Y, Luo L.Mater Des, 2014; 53: 838
[21] Liu P, Shi Q Y, Wang W, Wang X, Zhang Z L.Mater Lett, 2008; 62: 4106
[22] Xue P, Xiao B L, Ni D R, Ma Z Y.Mater Sci Eng, 2010; A527: 5723
[23] Xue P, Ni D R, Wang D, Xiao B L, Ma Z Y.Mater Sci Eng, 2011; A528: 4683
[24] Xue P, Xiao B L, Ma Z Y.Metall Mater Trans, 2015; 46A: 3091
[25] Chen Y C, Nakata K.Sci Technol Weld Join, 2010; 15: 293
[26] Zhang Z K, Wang X J, Wang P C, Zhao G.Trans Nonferrous Met Soc China, 2014; 24: 1709
[27] Wang X J, Li W H, Zhao G.Sci Technol Weld Join, 2014; 18: 1063
[28] Wei Y N, Li J L, Xiong J T, Huang F, Zhang F S.Mater Des, 2012; 33: 111
[29] Wang D, Xiao B L, Ma Z Y, Zhang H F.Scr Mater, 2009; 60: 112
[30] Sun Y F, Ji Y S, Fujii H, Nakata K, Nogi K.Mater Sci Eng, 2010; A527: 3427
[31] Sun Y F, Fujii H.Intermetallics, 2013; 33: 113
[32] Liu F C, Nakata K, Liao J, Hirota S, Fukui H.Sci Technol Weld Join, 2014; 19: 578
[33] Liu F C, Liao J, Nakata K.Mater Des, 2014; 54: 236
[34] Goushegir S M, dos Santos J F, Amancio-Filho S T.Mater Des, 2014; 54: 196.
[35] Liu F C, Liao J, Gao Y, Nakata K.Sci Technol Weld Join, 2015; 20: 291
[36] Matsushita M, Kitani Y, Ikeda R, Endo S, Fujii H.ISIJ Int, 2012; 52: 1335
[37] Fujii H, Cui L, Tsuji N, Maeda M, Nakata K, Nogi K.Mater Sci Eng, 2006; A429: 50
[38] Ozekcin A, Jin H W, Koo J Y, Bangaru N V, Ayer R, Vaughn G, Steel R, Packer S.Int J Offshore Polar Eng, 2004; 14: 284
[39] Cui L, Fujii H, Tsuji N, Nogi K.Scr Mater, 2007; 56: 637
[40] Chung Y D, Fujii H, Ueji R, Tsuji N.Scr Mater, 2010; 63: 223
[41] Matsushita M, Kitani Y, Ikeda R, Ono M, Fujii H, Chung Y D.Sci Technol Weld Join, 2011; 16: 181
[42] Ghosh M, Kumar K, Mishra R S.Scr Mater, 2010; 63: 851
[43] Ghosh M, Kumar K, Mishra R S.Mater Sci Eng, 2011; A528: 8111
[44] Xue P, Xiao B L, Wang W G, Zhang Q, Wang D, Wang Q Z, Ma Z Y.Mater Sci Eng, 2013; A575: 30
[45] Xue P, Li W D, Wang D, Wang W G, Xiao B L, Ma Z Y.Mater Sci Eng, 2016; A670: 153
[46] Xue P, Ma Z Y, Komizo Y, Fujii H.Mater Lett, 2016; 162: 161
[47] Li Y J, Fu R D. J Mech Eng, 2015; 51: 1
[47] (李艺君, 付瑞东. 机械工程学报, 2015; 51: 1)
[48] Nandan R, Roy G G, Lienert T J, DebRoy T.Sci Technol Weld Join, 2006; 11: 526
[49] Sato Y S, Nelson T W, Sterling C J.Acta Mater, 2005; 53: 637
[50] Du D X, Fu R D, Li Y J, Jing L, Ren Y B, Yang K.Mater Sci Eng, 2014; A616: 246
[51] Miyano Y, Fujii H, Sun Y, Katada Y, Kuroda S, Kamiya O.Mater Sci Eng, 2011; A528: 2917
[52] Park S H C, Sato Y S, Kokawa H, Okamoto K, Hirano S, Inagaki M.Scr Mater, 2004; 51: 101
[53] Sato Y S, Harayama N, Kokawa H, Inoue H, Tadokoro Y, Tsuge S.Sci Technol Weld Join, 2009; 14: 202
[54] Cho H H, Han H N, Hong S T, Park J H, Kwon Y J, Kim S H, Steel R J.Mater Sci Eng, 2011; A528: 2889
[55] Han J, Li H J, Zhu Z X, Barbaro F, Jiang L Z, Xu H G, Ma L.Mater Des, 2014; 63: 238
[56] Saeid T, Abdollah-zadeh A, Shibayanagi T, Ikeuchi K, Assadi H.Mater Sci Eng, 2010; A527: 6484
[57] Ishikawa T, Fujii H, Genchi K, Iwaki S, Matsuoka S, Nogi K.ISIJ Int, 2009; 49: 897
[58] Sarlak H, Atapour M, Esmailzadeh M.Mater Des, 2015; 66: 209
[59] Li H B, Jiang Z H, Feng H, Zhang S C, Li L, Han P D, Misra R D K, Li J Z.Mater Des, 2015; 84: 291
[60] Zhang H, Wang D, Xue P, Wu L H, Ni D R, Ma Z Y,Mater Des, 2016; 110: 802
[61] Edwards P, Ramulu M.Sci Technol Weld Join, 2009; 14: 669
[62] Zhang Y, Sato Y S, Kokawa H, Park S H C, Hirano S.Mater Sci Eng, 2008; A485: 448
[63] Sanders D G, Ramulu M, Edwards P D, Cantrell A.J Mater Eng Perform, 2010; 19: 503
[64] Pilchak A L, Tang W, Sahiner H, Reynolds A P, Williams J C.Metall Mater Trans, 2011; 42A: 745
[65] Davies P S, Wynne B P, Rainforth W M, Thomas M J, Threadgill P L.Metall Mater Trans, 2011; 42A: 2278
[66] Liu H J, Zhou L, Liu Q W.Mater Des, 2010; 31: 1650
[67] Wu L H, Xiao B L, Ni D R, Ma Z Y, Li X H, Fu M J, Zeng Y S.Scr Mater, 2015; 98: 44
[68] Edwards P D, Ramulu M.J Mater Process Technol, 2015; 218: 107
[69] Nimer S, Wolk J, Zupan M.Acta Mater, 2013; 61: 3050
[70] Fonda R W, Knipling K E.Acta Mater, 2010; 58: 6452
[71] Mironov S, Sato Y S, Kokawa H.Acta Mater, 2009; 57: 4519
[72] Fratini L, Micari F, Buffa G, Ruisi V F.CIRP Ann Manuf Technol, 2010; 59: 271
[73] Wu L H, Wang D, Xiao B L, Ma Z Y. Scr Mater, 2014; 78-79: 17
[74] Mironov S, Zhang Y, Sato Y S, Kokawa H.Scr Mater, 2008; 59: 27
[75] Pilchak A L, Juhas M C, Williams J C.Metall Mater Trans, 2007; 38A: 401
[76] Pilchak A L, Williams J C.Metall Mater Trans, 2011; 42A: 773
[77] Wu L H, Xue P, Xiao B L, Ma Z Y.Scr Mater, 2016; 122: 26
[78] Rai R, De A, Bhadeshia H K D H, DebRoy T.Sci Technol Weld Join, 2011; 16: 325
[79] Gu Y H, Jiao X D, Zhou C F, Gao H, Che J T.Weld Technol, 2015; 44: 1
[79] (顾艳红, 焦向东, 周灿丰, 高辉, 车俊铁. 焊接技术, 2015; 44: 1)
[80] Barnes S J, Bhatti A R, Steuwer A, Johnson R, Altenkirch J, Withers P J.Metall Mater Trans, 2012; 43A: 2342
[81] Miyazawa T, Iwamoto Y, Maruko T, Fujii H.Sci Technol Weld Join, 2012; 17: 207
[82] Sato Y S, Miyake M, Susukida S, Kokawa H, Omori T, Ishida K, Imano S, Sugimoto I, Park S H C, Hirano S. In: Mishra R S, Mahoney M W, Sato Y, Hovanski Y eds., Friction Stir Welding and Processing VIII. New Jersey: Sons Inc., 2015: 39
[83] Tjiong S C, Ma Z Y.Mater Sci Eng, 2000; R29: 49
[84] Wang D, Xiao B L, Ni D R, Ma Z Y.Acta Metall Sin (Eng Lett), 2014; 27: 816
[85] Prado R A, Murr L E, Soto K F, McClure J C.Mater Sci Eng, 2003; A349: 156
[86] Nelson T W, Zhang H, Haynes T.In: Proc 2nd Symp on Friction Stir Welding, Sweden: Gothenburg, 2000
[87] Shindo D J, Rivera A R, Murr L E.J Mater Sci, 2002; 37: 4999
[88] Feng A H, Ma Z Y.Scr Mater, 2007; 57: 1113
[89] Ceschini L, Boromei I, Minak G, Morri A, Tarterini F.Compos Sci Technol, 2007; 67: 605
[90] Liu H J, Feng J C, Fujii H, Nogi K.Int J Mach Tool Manuf, 2005; 45: 1635
[91] Wang D, Wang Q Z, Xiao B L, Ma Z Y.Mater Sci Eng, 2014; A589: 271
[92] Uzun H.Mater Des, 2007; 28: 1440
[93] Feng A H, Xiao B L, Ma Z Y.Compos Sci Technol, 2008; 68: 2141
[94] Marzoli L M, Strombeck A V, Dos Santos J F, Gambaro C, Volpone L M.Compos Sci Technol, 2006; 66: 363
[95] Nami H, Adgi H, Sharifitabar M, Shamabadi H.Mater Des, 2011; 32: 976
[96] Chen X G, da Silva M, Gougeon P, St-Georges L.Mater Sci Eng, 2009; A518: 174
[97] Cavaliere P, Cerri E, Marzoli L, Santos J D.Appl Compos Mater, 2004; 2: 247
[98] Arbegast W J, Hartley P J.In: Vitek J M ed., Proc 5th Int Conf on Trend in Welding Research, Pine Mountain, Georgia: ASM Int, 1998: 541
[99] Roy G G, Nandan R, DebRoy T.Sci Technol Weld Join, 2006; 11: 606
[100] Arora A, DebRoy T, Bhadeshia H K D H.Acta Mater, 2011; 59: 2020
[101] Frigaard ?, Grong ?, Midling O T.Metall Mater Trans, 2001; 32A: 1189
[102] Schmidt H, Hattel J, Wert J.Modell Simul Mater Sci Eng, 2004; 12: 143
[103] Nandan R, Roy G G, DebRoy T.Metall Mater Trans, 2006; 37A: 1247
[104] Nandan R, Roy G G, Lienert T J, DebRoy T.Acta Mater, 2007; 55: 883
[105] Zhang Z, Zhang H W.J Mater Process Technol, 2009; 209: 241
[106] Zhu X K, Chao Y J.J Mater Process Technol, 2004; 146: 263
[107] Zhang C B, Zhu X J, Li L J.In: 87th FABTECH Int and AWS Welding Show Prof Program, Atlanta, GA, 2006: 151
[108] Zhang X X, Xiao B L, Ma Z Y.Metall Mater Trans, 2011; 42A: 3218
[109] Zhang X X, Xiao B L, Ma Z Y.Metall Mater Trans, 2011; 42A: 3229
[110] Liu F C, Ma Z Y.Metall Mater Trans, 2008; 39A: 2378
[111] You G L, Ho N J, Kao P W.Mater Lett, 2013; 90: 26
[112] Lee I S, Kao P W, Ho N J.Intermetallics, 2008; 16: 1104
[113] Zhang Q, Xiao B L, Wang Q Z, Ma Z Y.Metall Mater Trans, 2014; 45A: 2776
[114] Zhang Q, Xiao B L, Ma Z Y.Intermetallics, 2013; 40: 36
[115] Zhang Q, Xiao B L, Wang W G, Ma Z Y.Acta Mater, 2012; 60: 7090
[116] Zhang Q, Xiao B L, Ma Z Y.Mater Chem Phys, 2013; 139: 596
[117] Jeon C H, Jeong Y H, Seo J J, Tien H N, Hong S T, Yum Y J, Hur S H, Lee K J.Int J Preci Eng Manuf, 2014; 15: 1235
[118] Liu Q, Ke L M, Liu F C, Mao Y Q.Hot Work Technol, 2016; 45(2): 1
[118] (刘强, 柯黎明, 刘奋成, 毛育青. 热加工工艺, 2016; 45(2): 1)
[119] Morisada Y, Fujii H, Nagaoka T, Nogi K, Fukusumi M.Composite, 2007; 38A: 2097
[120] Liu Z Y, Xiao B L, Wang W G, Ma Z Y.Acta Metall Sin (Eng Lett), 2014; 27: 901
[121] Liu Z Y, Xiao B L, Wang W G, Ma Z Y.Carbon, 2014; 69: 264
[122] Liu Z Y, Xiao B L, Wang W G, Ma Z Y.Carbon, 2012; 50: 1843
[123] Liu Z Y, Xiao B L, Wang W G, Ma Z Y.Carbon, 2013; 62: 35
[124] Liu Z Y, Xiao B L, Wang W G, Ma Z Y.J Mater Sci Technol, 2014; 30: 649
[125] Valiev R.Nat Mater, 2004; 3: 511
[126] Tao N R, Lu K.Acta Metall Sin, 2014; 50: 141
[126] (陶乃镕, 卢柯. 金属学报, 2014; 50: 141)
[127] Su J Q, Nelson T W, Sterling C J.In: Shaw L L, Suryanarayana C, Mishra R S eds., Symp on Processing and Properties of Structural Materials, 2013 TMS Fall Meeting, Chigago: Processing and Properties of Structural Nanomaterials, 2003: 181
[128] Xue P, Xiao B L, Ma Z Y.J Mater Sci Technol, 2013; 29: 1111
[129] Xue P, Xiao B L, Ma Z Y.Mater Des, 2014; 56: 848
[130] Xue P, Komizo Y, Ueji R, Fujii H.Mater Sci Eng, 2014; A606: 322
[131] Xue P, Xiao B L, Ma Z Y.Acta Metall Sin, 2014; 50: 245
[131] (薛鹏, 肖伯律, 马宗义. 金属学报, 2014; 50: 245)
[132] Xue P, Xiao B L, Ma Z Y.Scr Mater, 2013; 68: 751
[133] Xue P, Xiao B L, Ma Z Y.Mater Sci Eng, 2012; A532: 106
[134] Xue P, Wang B B, Chen F F, Wang W G, Xiao B L, Ma Z Y.Mater Charact, 2016; 121: 187
[135] Xue P, Huang Z Y, Wang B B, Tian Y Z, Wang W G, Xiao B L, Ma Z Y.Sci China Mater, 2016; 59: 531
[136] Wang Y M, Chen M W, Zhou F H, Ma E.Nature, 2002; 419: 912
[1] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[2] FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. 金属学报, 2022, 58(11): 1416-1426.
[3] ZHU Shize, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. Influence of Cu Content on the Negative Effect of Natural Aging in SiC/Al-Mg-Si-Cu Composites[J]. 金属学报, 2021, 57(7): 928-936.
[4] HE Changshu, QIE Mofan, ZHANG Zhiqiang, ZHAO Xiang. Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding[J]. 金属学报, 2021, 57(12): 1614-1626.
[5] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[6] Shan SU. Study on Vaporizing Foil Actuator Welding Process of 5A06/0Cr18Ni10Ti with Interlayer[J]. 金属学报, 2019, 55(8): 1041-1048.
[7] Huiyuan WANG,Chao LI,Zhigang LI,Jin XU,Hongjiang HAN,Zhiping GUAN,Jiawang SONG,Cheng WANG,Pinkui MA. Current Research and Future Prospect on the Preparation and Architecture Design of Nanomaterials Reinforced Light Metal Matrix Composites[J]. 金属学报, 2019, 55(6): 683-691.
[8] MA Guonan, WANG Dong, LIU Zhenyu, BI Sheng, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Hot Pressing Temperature on Microstructure and Tensile Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2019, 55(10): 1319-1328.
[9] Xuexi ZHANG, Zhong ZHENG, Ying GAO, Lin GENG. Progress in High Throughput Fabrication and Characterization of Metal Matrix Composites[J]. 金属学报, 2019, 55(1): 109-125.
[10] Bolü XIAO, Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA. Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites[J]. 金属学报, 2019, 55(1): 59-72.
[11] Gaohui WU, Jing QIAO, Longtao JIANG. Research Progress on Principle of Dimensional Stability and Stabilization Design of Al and Its Composites[J]. 金属学报, 2019, 55(1): 33-44.
[12] Tongxiang FAN, Yue LIU, Kunming YANG, Jian SONG, Di ZHANG. Recent Progress on Interfacial Structure Optimization and Their Influencing Mechanism of Carbon Reinforced Metal Matrix Composites[J]. 金属学报, 2019, 55(1): 16-32.
[13] Chen WANG, Beibei WANG, Peng XUE, Dong WANG, Dingrui NI, Liqing CHEN, Bolü XIAO, Zongyi MA. Fatigue Behavior of Friction Stir Welded SiCp/6092Al Composite[J]. 金属学报, 2019, 55(1): 149-159.
[14] Chuansong WU, Hao SU, Lei SHI. Numerical Simulation of Heat Generation, Heat Transfer and Material Flow in Friction Stir Welding[J]. 金属学报, 2018, 54(2): 265-277.
[15] Guangming XIE, Zongyi MA, Peng XUE, Zongan LUO, Guodong WANG. Effects of Tool Rotation Rates on Superplastic Deformation Behavior of Friction Stir Processed Mg-Zn-Y-Zr Alloy[J]. 金属学报, 2018, 54(12): 1745-1755.
No Suggested Reading articles found!