Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (9): 1128-1136    DOI: 10.11900/0412.1961.2014.00142
Current Issue | Archive | Adv Search |
A NEW METHOD FOR SIMULATING AND PREDICT- ING DYNAMIC RECRYSTALLIZATION IN METAL FORGING
LU Shiqiang(), WANG Kelu, LI Xin, LIU Shibiao
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063
Cite this article: 

LU Shiqiang, WANG Kelu, LI Xin, LIU Shibiao. A NEW METHOD FOR SIMULATING AND PREDICT- ING DYNAMIC RECRYSTALLIZATION IN METAL FORGING. Acta Metall Sin, 2014, 50(9): 1128-1136.

Download:  HTML  PDF(5212KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The window of thermomechanical parameters where dynamic recrystallization occurs can be predicted according to the power dissipation map based on dynamic materials model, and the distribution of thermomechanical parameters in metal forging can be calculated by using finite element (FE) simulation. Thus, the zone of dynamic recrystallization and its evolution in metal forging not only can be simulated and predicted, but also the forging process parameters where dynamic recrystallization occurs can be optimized by the combination of the window of thermomechanical parameters where dynamic recrystallization occurs and finite element simulaton, which provides a new way for realizing the control of microstructure and property of forging. A method for simulating and predicting dynamic recrystallization in metal forging is proposed based on the combination of the thermomechanical parameter window of dynamic recrystallization predicted by power dissipation map and finite element simulation, and the method is already integrated into the commercial FE software Deform 3D. The zone of dynamic recrystallization and its evolution in compression of titanium alloy TC11 at process parameters (1020 ℃, 0.1 s-1), (1050 ℃, 0.1 s-1), (1050 ℃, 10 s-1) and constant strain rate are successfully simulated and predicted by using the modified FE software Deform 3D. The simulated and predicted result is in good agreement with experiment.

Key words:  power dissipation map      finite element      dynamic recrystallization      simulation and prediction      titanium alloy TC11     
ZTFLH:  TG316  
Fund: Supported by National Natural Science Foundation of China (No.51164030)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00142     OR     https://www.ams.org.cn/EN/Y2014/V50/I9/1128

Fig.1  Power dissipation maps (PDMs) of titanium alloy TC11 at the strains of 0.7 (a) and 0.9 (b) (Contour numbers represent the values of the efficiency of power dissipation h)
Fig.2  Thermomechanical parameter window of dynamic recrystallization (DRX) for titanium alloy TC11
Fig.3  Flow stress curves at the strain rate of 0.1 s-1 at different temperatures
Fig.4  Relationship curves between working hardening and flow stress at 1050 ℃ and 0.1 s-1 (q—work hardening rate, s—stress)
Fig.5  Simulations of dynamic recrystallization behavior in compression at different process parameters (Numbers at the top are percents of reduction in height; P1, P2, P3, P4 are marked points)
Fig.6  Temperature changes of the marked points in compression at the different process parameters

(a) 1020 ℃, 0.1 s-1

(b) 1050 ℃, 0.1 s-1

(c) 1050 ℃, 10 s-1

Fig.7  Effective strain rate changes of the marked points in compression at the different process parameters

(a) 1020 ℃, 0.1 s-1

(b) 1050 ℃, 0.1 s-1

(c) 1050 ℃, 10 s-1

Fig.8  Effective strain changes of the marked points in compression at the different process parameters

(a) 1020 ℃, 0.1 s-1

(b) 1050 ℃, 0.1 s-1

(c) 1050 ℃, 10 s-1

Fig.9  Microstructures at the different zones of the specimens compressed 70% in height reduction at 1020 ℃ and 0.1 s-1

(a) P2 zone (b) P4 zone (c) P3 zone

  
  
[1] Lee C H, Kobayashi S. J Eng Ind, 1973; 95: 865
[2] Yue C X, Zhang L W, Liao S L, Gao H J. Comp Mater Sci, 2009; 45: 462
[3] Lin Y C, Chen M S. J Mater Process Technol, 2009; 209: 4578
[4] Reza R, Siamak S. Mater Des, 2007; 28: 2366
[5] Yeom J T, Lee C S, Kim J H, Park N K. Mater Sci Eng, 2007; A449-451: 722
[6] Serajzadeh S. Int J Mach Tool Manuf, 2003; 43: 1487
[7] Wang K L, Fu M W, Lu S Q, Li X. Mater Des, 2011; 32: 1283
[8] Gegel H L. In: Cinicnnati O H, Chen C C eds., Proc Symp on Experimental Verification of Process Models, Materials Park, Ohio: ASM, 1983: 25
[9] Prasad Y V, Gegel H L, Doraivelu S M, Malas J C, Morgan J T, Lark K A, Brarker D R. Metall Trans, 1984; 15A: 1883
[10] Gegel H L. Synthesis of Atomistics and Continuum Modeling to Describe Microstructure: Computer Simulation in Materials Science. Materials Park, Ohio: ASM, 1986: 291
[11] Malas J C, Seetharaman V. JOM-J Min Met Mater Soc, 1992; 48: 8
[12] Alexander J M. Modelling of Hot Deformation of Steels. Berlin: Springer Verlag, 1989: 105
[13] Sun Y, Zeng W D, Ma X, Xu B, Liang X B, Zhang J W. Intermetallics, 2011; 19: 1014
[14] Peng W P, Li P J, Zeng P, Lei L P. Mater Sci Eng, 2008; A494: 173
[15] Luo J, Li M Q, Yu W X. Mater Sci Eng, 2009; A504: 90
[16] Wang K L, Lu S Q, Fu M W, Li X, Dong X J. Mater Sci Eng, 2010; A527: 7279
[17] Lu S Q, Li X, Wang K L, Dong X J, Li Z X, Cao C X. Chin J Mech Eng, 2007; 43(8): 77
(鲁世强, 李 鑫, 王克鲁, 董显娟, 李臻熙, 曹春晓. 机械工程学报, 2007; 43(8): 77)
[18] Murty S V, Rao B N. J Mater Process Technol, 2000; 104: 103
[19] Prasad Y V, Sastry D H, Deevi S C. Intermetallics, 2000; 8: 1067
[20] Prasad Y V, Sasidhara S. Hot Working Guide: A Compendium of Processing Maps. Ohio: ASM International, The Materials Information Society, 1997: 2
[21] Lu S Q, Li X, Wang K L, Dong X J, Fu M W. Trans Nonferrous Met Soc China, 2013; 23: 353
[22] Wang K L, Lu S Q, Fu M W, Li X, Dong X J. Mater Charact, 2009; 60: 492
[23] Li X, Lu S Q, Wang K L, Zhao W G, Li Z X, Cao C X. Acta Metall Sin, 2007; 43: 1268
(李 鑫, 鲁世强, 王克鲁, 赵为纲, 李臻熙, 曹春晓. 金属学报, 2007; 43: 1268)
[24] Rollett A D, Jonas J J. Acta Mater, 1996; 44: 127
[25] Prasad G V, Goerdeler M, Cottstein G. Mater Sci Eng, 2005; A400-401: 231
[26] Ouyang D L, Lu S Q, Cui X, Dong X J, Wu C, Qiu W. J Aeronaut Mater, 2010; 30(2): 17
(欧阳德来, 鲁世强, 崔 霞, 董显娟, 吴 超, 邱 伟. 航空材料学报, 2010; 30(2): 17)
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[3] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[5] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[6] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[8] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[9] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[10] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[11] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[12] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[13] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[14] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[15] JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. 金属学报, 2020, 56(10): 1433-1440.
No Suggested Reading articles found!