Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (9): 1137-1145    DOI: 10.11900/0412.1961.2014.00156
Current Issue | Archive | Adv Search |
CHARACTERISTICS AND EVOLUTION OF THIN LAYER ELECTROLYTE ON PIPELINE STEEL UNDER CATHODIC PROTECTION SHIELDING DISBONDED COATING
YAN Maocheng(), WANG Jianqiu, HAN En-hou, SUN Cheng, KE Wei
National Engineering Center for Corrosion Control, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

YAN Maocheng, WANG Jianqiu, HAN En-hou, SUN Cheng, KE Wei. CHARACTERISTICS AND EVOLUTION OF THIN LAYER ELECTROLYTE ON PIPELINE STEEL UNDER CATHODIC PROTECTION SHIELDING DISBONDED COATING. Acta Metall Sin, 2014, 50(9): 1137-1145.

Download:  HTML  PDF(1620KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

External corrosion and stress corrosion cracking (SCC) have been observed in a thin layer electrolyte under disbonded coating shielding cathodic protection (CP). In this work, characteristic and evolution of the thin layer electrolyte environment (potential, pH, etc.) on pipeline steel under disbonded coatings were investigated by microelectrode technology in a simulating crevice cell at various CP levels and different atmosphere conditions (CO2 and O2). The results show that pH of the thin layer electrolyte under the disbondment varies from near neutral to the value as high as 12, depending on the amount of CP current and CO2. CP current on pipeline surface initiates a high pH environment on the steel surface. Due to the CP shielding effect and a high CO2 content, a near-neutral pH environment may exist under disbonded coating. The CP effectiveness and the shielding effect of the disbondment can be estimated by measuring pH of the thin layer electrolyte under disbonded coatings.

Key words:  pipeline steel      soil corrosion      3PE coating      cathodic protection      thin electrolyte layer      stress corrosion cracking (SCC)     
ZTFLH:  TG172.9  
Fund: Supported by National Natural Science Foundation of China (No.51131001) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00156     OR     https://www.ams.org.cn/EN/Y2014/V50/I9/1137

Fig.1  Schematics of electrochemical cell simulating the thin electrolyte layer environment in a crevice on pipeline steel under disbonded coating (RE—reference electrode, CE—counter electrode)
Fig.2  Distributions of local potential (E) of X70 steel (a) and pH of thin layer electrolyte (b) in the crevice without cathodic protection (Bulk solution at the holiday bubbled with 5%CO2 + 95%N2)
Fig.3  Distributions of local potential of X70 steel (a) and pH of thin layer electrolyte (b) in the crevice during cathodic protection potential ECP = -1000 mV applied and interrupted at the holiday (Bulk solution at the holiday bubbled with 5%CO2 + 95%N2)
Fig.4  Distributions of local potential of X70 steel (a) and pH of thin layer electrolyte (b) in the crevice at various CP levels applied at the holiday (Bulk solution at holiday bubbled with 5%CO2+95%N2)
Fig.5  Distributions of local potential of X70 steel (a) and pH of thin layer electrolyte (b) in the crevice during ECP= -1000 mV applied and interrupted at the holiday (Bulk solution bubbled with N2)
Fig.6  Distributions of local potential of X70 steel (a) and pH of thin layer electrolyte (b) in the crevice during ECP= -1000 mV applied and interrupted at the holiday (Bulk soil solution is open to air)
Fig.7  Variation of local potential of X70 steel (a) and pH (b) at 180 mm in the crevice (Bulk solution at the holiday bubbled with 5%CO2+ 95%N2, pure N2 and air, respectively)
Fig.8  Distributions of local potential of X70 steel (a) and pH of thin layer electrolyte (b) in the crevice before CP interruption and after 4 h of CP interruption (ECP= -1000 mV, bulk solutions at the holiday bubbled with 5%CO2+95%N2, pure N2 and air, respectively)
Fig.9  Polarization curves for X70 steel in the soil solutions at pH 6.8, at pH 11 and in the high pH SCC solution (pH 9.5, containing Na2CO3+NaHCO3, i—current density)
[1] Sheng G J, Chen H Y, Xue Z Y, Zhao J. Corros Sci Prot Technol, 2013; 25: 246
(沈光霁, 陈洪源, 薛致远, 赵 君. 腐蚀科学与防护技术, 2013; 25: 246)
[2] Tang Y P, Yan R J, Huang Z Y, Li J X, Wang L. Mater Prot, 2011; 44(12): 45
(唐谊平, 晏荣军, 黄子阳, 李建新, 王 琍. 材料保护, 2011; 44(12): 45)
[3] Song F M, Kirk D W, Graydon J W, Cormack D E, Wong D. Mater Perform, 2003; 42: 24
[4] Nazarbeygi A E, Moeini A R. Mater Perform, 2009; 48: 32
[5] Argent C, Norman D. Corrosion' 2005, Houston, TX: NACE, 2005: Paper 05034 (CD)
[6] Hughes C, Norsworthy R. Corrosion' 2009, Houston, TX: NACE International, 2009: Paper 09043 (CD)
[7] Yan M C, Weng Y J. J Chin Soc Corros Prot, 2004; 24: 95
(闫茂成, 翁永基. 中国腐蚀与防护学报, 2004; 24: 95)
[8] Zhang Y Y, Han W L, Li A G, Shao H Q, Xie B B. Corros Prot, 2010; 31: 787
(张盈盈, 韩文礼, 李爱贵, 邵怀启, 解蓓蓓. 腐蚀与防护, 2010; 31: 787)
[9] Xu J, Sun C, Yan M C, Wang F H. Mater Chem Phys, 2013; 142: 692
[10] Fang B Y, Han E H, Wang J Q, Ke W. Corros Eng Sci Technol, 2007; 42: 123
[11] Song F M. Corros Sci, 2012; 55: 107
[12] Wang Z Y, Wang J Q, Han E-H, Ke W, Yan M C, Zhang J W, Liu C W. Acta Metall Sin, 2012; 48: 1267
(王志英, 王俭秋, 韩恩厚, 柯 伟, 闫茂成, 张峻巍, 刘楚威. 金属学报, 2012; 48: 1267)
[13] Zhao B, Du C W, Liu Z Y, Li X G, Yang J K, Li Y Q. Acta Metall Sin, 2012; 48: 1530
(赵 博, 杜翠薇, 刘智勇, 李晓刚, 杨吉可, 李月强. 金属学报, 2012; 48: 1530)
[14] Parkins R N. Corrosion' 2000, Houston, TX: NACE, 2000: Paper 363 (CD)
[15] Eslami A, Fang B, Kania R, Worthingham B, Been J, Eadie R, Chen W. Corros Sci, 2010; 52: 3750
[16] Martyn W, Brian E, Tom J, Robert W. Proceedings of the 1998 International Pipeline Conference, IPC. Part 1, New York: ASME, 1998: 399
[17] Perdomo J J, Song I. Corros Sci, 2000; 42: 1389
[18] Fessler R R, Markworth A J, Parkins R N. Corrosion, 1983; 39: 20
[19] Li Z F, Gan F X, Mao X H. Corros Sci, 2002; 44: 689
[20] Yan M C, Weng Y J. J Chin Soc Corros Prot, 2005; 25: 34
(闫茂成, 翁永基. 中国腐蚀与防护学报, 2005; 25: 34)
[21] Yan M C, Wang J Q, Han E H, Ke W. Corros Eng Sci Technol, 2007; 42: 42
[22] Yan M C, Wang J Q, Ke W, Han E-H. J Chin Soc Corros Prot, 2007; 27: 257
(闫茂成, 王俭秋, 柯 伟, 韩恩厚. 中国腐蚀与防护学报, 2007; 27: 257)
[23] Yan M C, Wang J Q, Han E-H, Ke W. Corros Sci, 2008; 50: 1331
[24] Song F M. Corrosion, 2010; 66: 095004-095004-14
[25] Charles E A, Parkins R N. Corrosion, 1995; 51: 518
[26] Chen X, Li X G, Du C W, Cheng Y F. Corros Sci, 2009; 51: 2242
[27] Yan M C, Sun C, Xu J, Dong J H, Ke W. Corros Sci, 2014; 80: 309
[28] Eslami A, Kania R, Worthingham B, Boven G V, Eadie R, Chen W. Corrosion, 2013; 69: 1103
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[4] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[5] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[6] Yadong LI,Qiang LI,Xiao TANG,Yan LI. Reconstruction and Characterization of Galvanic Corrosion Behavior of X80 Pipeline Steel Welded Joints[J]. 金属学报, 2019, 55(6): 801-810.
[7] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[8] Yun SHU, Maocheng YAN, Yinghua WEI, Fuchun LIU, En-Hou HAN, Wei KE. Characteristics of SRB Biofilm and Microbial Corrosionof X80 Pipeline Steel[J]. 金属学报, 2018, 54(10): 1408-1416.
[9] Xianbo SHI, Wei YAN, Wei WANG, Yiyin SHAN, Ke YANG. Hydrogen-Induced Cracking Resistance of Novel Cu-Bearing Pipeline Steels[J]. 金属学报, 2018, 54(10): 1343-1349.
[10] Hongzhong YUAN,Zhiyong LIU,Xiaogang LI,Cuiwei DU. Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment[J]. 金属学报, 2017, 53(7): 797-807.
[11] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
[12] Xianbo SHI,Dake XU,Maocheng YAN,Wei YAN,Yiyin SHAN,Ke YANG. Study on Microbiologically Influenced Corrosion Behavior of Novel Cu-Bearing Pipeline Steels[J]. 金属学报, 2017, 53(2): 153-162.
[13] Xiaoyu ZHAO, Feng HUANG, Lijun GAN, Qian HU, Jing LIU. Hydrogen-Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of the Welded MS X70 Pipeline Steel in H2S Environment[J]. 金属学报, 2017, 53(12): 1579-1587.
[14] Libao YU, Maocheng YAN, Jian MA, Minghao WU, Yun SHU, Cheng SUN, Jin XU, Changkun YU, Yongchang QING. Sulfate Reducing Bacteria Corrosion of Pipeline Steel inFe-Rich Red Soil[J]. 金属学报, 2017, 53(12): 1568-1578.
[15] Maocheng YAN,Shuang YANG,Jin XU,Cheng SUN,Tangqing WU,Changkun YU,Wei KE. STRESS CORROSION CRACKING OF X80 PIPELINE STEEL AT COATING DEFECT IN ACIDIC SOIL[J]. 金属学报, 2016, 52(9): 1133-1141.
No Suggested Reading articles found!