," />  ,"/>  ,"/> 多元Al-7.5Si-4Cu合金热疲劳裂纹萌生与扩展行为的研究
Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (3): 303-310    DOI: 10.3724/SP.J.1037.2012.00484
Current Issue | Archive | Adv Search |
THERMAL FATIGUE CRACK INITIATION ANDPROPAGATION OF MULTIELEMENTAl-7.5Si-4Cu ALLOY
LIU Guanglei1, SI Naichao1, SUN Shaochun1, ZHANG Zhijian1,WU Qinfang2
1) School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013
2) Suzhou Mingzhi Technology Ltd., Suzhou 215217
Cite this article: 

LIU Guanglei, SI Naichao, SUN Shaochun, ZHANG Zhijian,WU Qinfang. THERMAL FATIGUE CRACK INITIATION ANDPROPAGATION OF MULTIELEMENTAl-7.5Si-4Cu ALLOY. Acta Metall Sin, 2013, 49(3): 303-310.

Download:  PDF(1233KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the rapid development of automotive industry, the requirements for engine performance hasbecome increasingly higher and higher, such as dynamic performance, environmental performance, fuel economyperformance and so on. Obviously, using lighter aluminum engine has become the future of the automobile industry.When start or stop the engine, the engine generates drastic temperature field that will make parts of the enginecomponents into the plastic deformation zone. If the engine components continue like this, extremely high thermalstrain will cause the thermal fatigue failure of aluminum alloy for automotive engine. Thermal fatigue is a more seriousform of material fatigue failure. The thermal fatigue is prevalent in many important engine castings, such as cylinderbody, cylinder head, piston and so on. Therefore, study on thermal fatigue properties of multivariate Al-Si-Cu castalloy has the most important significance. Based on this thermal fatigue behaviors of multivariate Al-7.5Si-4Cu alloys under different heat treatmentwere investigated in the temperature ranges of room temperature to 350℃. Thethermal fatigue cracks of the tested specimens were observed using OM and SEM. The results demonstrate that thermalfatigue properties of the alloy after T6 heat treatment is better than the alloy after cast-quenching+aging heattreatment and the cast alloy. Reasonable heat treatment process can improve the strength, the plasticity and thethermal fatigue property of multivariate Al-7.5Si-4Cu alloy, including reduce the rate of crack propagation.The main reason of crack initiation is oxidative microstructure induced by thermal stress. Fatigue crack expands alongthe grain boundary bypassivation-sharpen of crack tip in the early. In the late, fatigue crack expands with both intergranular way andtransgranular way by passivation-sharpen of crack tip and siamesed holes on front edge of crack tip. The Si phasescan affect fatigue crack propagation. When the angle between the fatigue crack propagation and the short axis of theSi phase is more than 60°, fatigue crack expandsas “bypass-wall expansion”. When the angle between the fatiguecrack propagation and the long axis of the Si phase is more than 60°, fatigue crack expands as “through-wallexpansion”. Oxidation behavior effects significantly at the crack initiation period. After T6 heat treatment, theantioxidant property of multivariate Al-7.5Si-4Cu alloy is the best. Oxidation kinetics curves of multivariateAl-7.5Si-4Cu alloy under the different heat treatment are all logarithmic relationship.

Key words:  multivariate Al-7.5Si-4Cu      thermal fatigue      initiation      propagation path       ')" href="#">oxidation
 
     
Received:  13 August 2012     
Service
E-mail this article  ”. Please open it by linking:https://www.ams.org.cn/EN/abstract/abstract21089.shtml" name="neirong">  ">
Add to citation manager
E-mail Alert
RSS
Articles by authors
LIU Guanglei
SI Naichao
SUN Shaochun
ZHANG Zhijian
WU Qinfang

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00484     OR     https://www.ams.org.cn/EN/Y2013/V49/I3/303

[1] Lan D Y, Guo A R.Res Stud Foundry Equip, 2008; 8(4): 45


(兰冬云, 郭敖如. 铸造设备研究, 2008; 8(4): 45)

[2] Ding X Q, He G Q.J TongjiUniv, 2005; 11: 1504

(丁向群, 何国求. 同济大学学报, 2005; 11: 1504)

[3] Xia P C, Yu J J, Sun X F, Guan H R, Hu Z Q.Rare Met Mater Eng, 2011; 40: 152

(夏鹏成, 于金江, 孙晓峰, 管恒荣, 胡壮麒. 稀有金属材料与工程, 2011; 40: 152)

[4] Xiao X, Xu H, Qin X Z, Guo Y A, Guo J T, Zhou L Z.ActaMetall Sin, 2011; 47: 1129

(肖旋, 许辉, 秦学智, 郭永安, 郭建亭, 周兰章. 金属学报, 2011; 47: 1129)

[5] Jiang X S, He G Q, Liu B, Fan S J, Zhu M H.Rare Met Mater Eng, 2010; 39(suppl.): 459

(蒋小松, 何国求, 刘兵, 范宋杰, 朱旻昊. 稀有金属材料与工程, 2010; 39(增刊): 459)

[6] Tilmann B, Detlef L, Jochen L, Ingo H.Mater SciEng, 2007; A468: 184

[7] John C, translated by Li D Z, Li Y Y.Castings. Beijing: Science Press, 2011: 344

(约翰坎贝尔著, 李殿中, 李依依译. 铸造原理. 北京: 科学出版社, 2011: 344)

[8] Deng B L, Liu J P, Yang J, Zhao Z C, Fu J Q.J Hunan Univ (Nat Sci), 2012; 39(2): 30

(邓帮林, 刘敬平, 杨靖, 赵智超, 付建勤. 湖南大学学报(自然科学版), 2012; 39(2): 30)

[9] Liu Y B, Liu Z Y, Li Y T, Xia Q K, Zhou J.Mater SciEng, 2008; A492: 333

[10] Mo D F, He G Q, Zhu Z Y, Liu X S.ActaMetall Sin, 2009; 45: 861

(莫德锋, 何国球, 朱正宇, 刘晓山. 金属学报, 2009; 45: 861)

[11] Xu F, Chen Z Z.EngMech, 2011; 28(10): 197

(徐芳, 陈振中. 工程力学, 2011; 28(10): 197)

[12] Song M S, Ran M W, Kong Y Y, Yan D Y.Chin J Nonferrous Met, 2011; 21: 538

(宋谋胜, 冉茂武, 孔园园, 晏登扬. 中国有色金属学报, 2011; 21: 538)

[13] Jiang X S, He G Q, Liu B, Fan S J, Zhu M H.Trans Nonferrous Met Soc China, 2011; 21: 443

[14] Arami H, Khalifehzadeh R, Akbari M, Khomamizadeh F.Mater SciEng, 2008; A472: 107

[15] Si N C, Wu Q, Li G Q.Foundry, 2006; 55: 731

(司乃潮, 吴强, 李国强. 铸造, 2006; 55: 731)

[16] Wang H.PhD Dissertation, Northwestern Polytechnical University, Xi'an, 2002

(王泓. 西北工业大学博士学位论文, 西安, 2002)

[17] Song J M, Lui T S, Kao I H, Chen L H, Lin H M.Scr Mater, 2004; 51: 1159

[18] Zhou J E, Ran G.Heat Treat Met, 2008; 33(1): 34

(周敬恩, 冉广. 金属热处理, 2008; 33(1): 34)

[19] Zhang H, Wang Y C, Liu F, Ai S H, Zang Q S, Wang Z G.J Mater SciTechnol, 2002; 18: 176

[20] Li L.PhD Dissertation, Northeastern University, Shenyang, 2009

(李莉. 东北大学博士学位论文, 沈阳, 2009)

[21] Cui Y Y, Xiang H F, Jia Q, Yang R.ActaMetall Sin, 2005; 41: 108

(崔玉友, 项宏福, 贾清, 杨锐. 金属学报, 2005; 41: 108)

[22] Jian H G.PhD Dissertation, Central South University, Changsha, 2010

(蹇海根. 中南大学博士学位论文, 长沙, 2010)

[23] Tian N, Zhao G, Zuo L, Liu C M.ActaMetall Sin, 2010; 46: 613

(田妮, 赵刚, 左良, 刘春明. 金属学报, 2010; 46: 613)

[24] Zhang Y H, Zhang Z Q, Robert E S, Liu Q.ActaMetall Sin, 2012; 48: 351

(张永皞, 张志清, Robert E S, 刘庆. 金属学报, 2012; 48: 351)

[25] Zhou M Z, Yi D Q, Wang B, Huang D Y.J Central South Univ (SciTechnol), 2012; 43(1): 66

(周明哲, 易丹青, 王斌, 黄道远. 中南大学学报(自然科学版), 2012; 43(1): 66)

[26] Zhang T B, Ding H, Deng Z H, Zhong H, Hu R, Xue X Y, Li J S.Rare Met Mater Eng, 2012; 41(1): 33

(张铁邦, 丁浩, 邓志海, 钟宏, 胡锐, 薛祥义, 李金山. 稀有金属材料与工程, 2012; 41(1): 33)
[1] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[2] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
[3] WANG Li,HE Yufeng,SHEN Jian,ZHENG Wei,LOU Langhong,ZHANG Jian. Effect of Secondary Orientation on Oxidation Anisotropy Around the Holes of Single Crystal Superalloy During Thermal Fatigue Tests[J]. 金属学报, 2019, 55(11): 1417-1426.
[4] Guangping ZHANG, Honglei CHEN, Xuemei LUO, Bin ZHANG. Progress in Thermal Fatigue of Micro/Nano-ScaleMetal Conductors[J]. 金属学报, 2018, 54(3): 357-366.
[5] Zilong ZHANG, Shuang XIA, Wei CAO, Hui LI, Bangxin ZHOU, Qin BAI. EFFECTS OF GRAIN BOUNDARY CHARACTER ON INTERGRANULAR STRESS CORROSION CRACKING INITIATION IN 316 STAINLESS STEEL[J]. 金属学报, 2016, 52(3): 313-319.
[6] Zhisheng WANG, Xiang CHEN, Yanxiang LI, Huawei ZHANG, Yuan LIU. EFFECTS OF B ON HIGH TEMPERATURE MECHA-NICAL PROPERTIES AND THERMAL FATIGUE BEHAVIOR OF COPPER DIE-CASTING DIE STEEL[J]. 金属学报, 2015, 51(5): 519-526.
[7] PU Sheng, WANG Li, XIE Guang, DING Xianfei, LOU Langhong, FENG Qiang. EFFECT OF NOTCH ORIENTATION AND LOCAL RECRYSTALLIZATION ON THERMAL FATIGUE PROPERTIES OF A DIREC- TIONALLY SOLIDIFIED Co-BASED SUPERALLOY[J]. 金属学报, 2015, 51(4): 449-457.
[8] Li WANG,Zhongjiao ZHOU,Shaohua ZHANG,Xiangdong JIANG,Langhong LOU,Jian ZHANG. CRACK INITIATION AND PROPAGATION AROUND HOLES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY DURING THERMAL FATIGUE CYCLE[J]. 金属学报, 2015, 51(10): 1273-1278.
[9] YU Long, SONG Xiping, ZHANG Min, LI Hongliang, JIAO Zehui, YU Huichen. CRACK INITIATION AND PROPAGATION OF HIGH Nb-CONTAINING TiAl ALLOY IN FATIGUE-CREEP INTERACTION[J]. 金属学报, 2014, 50(10): 1253-1259.
[10] WANG Zhiying WANG Jianqiu HAN En–hou KE Wei YAN Maocheng ZHANG Junwei LIU Chuwei . STRESS CORROSION CRACK INITIATION BEHAVIOR FOR THE X70 PIPELINE STEEL BENEATH A DISBONDED COATING[J]. 金属学报, 2012, 48(10): 1267-1272.
[11] XIAO Xuan XU Hui QIN Xuezhi GUO Yongan GUO Jianting ZHOU Lanzhang. THERMAL FATIGUE BEHAVIORS OF THREE CAST NICKEL BASE SUPERALLOYS[J]. 金属学报, 2011, 47(9): 1129-1134.
[12] WANG Ming ZHANG Bin LIU Changsheng ZHANG Guangping. STUDY ON THERMAL FATIGUE FAILURE OF THIN GOLD FILM WITH ALTERNATING CURRENT LOADING[J]. 金属学报, 2011, 47(5): 601-604.
[13] XIE Jijia HONG Youshi. EXPERIMENTAL INVESTIGATION ON FATIGUE BEHAVIOR OF NANOCRYSTALLINE NICKEL[J]. 金属学报, 2009, 45(7): 844-848.
[14] ZHANG Yongjian HUI Weijun XIANG Jinzhong DONG Han WENG Yuqing . EFFECT OF GRAIN SIZE ON ULTRA--HIGH--CYCLE FATIGUE PROPERTIES OF 42CrMoVNb STEEL[J]. 金属学报, 2009, 45(7): 880-886.
[15] CHEN Zhubing HUANG Zhiwei WANG Zhongguang. THERMO--MECHANICAL FATIGUE BEHAVIOR OF Ni--BASED SUPERALLOY COATED WITH Ni--Cr--Al--Y[J]. 金属学报, 2009, 45(7): 820-825.
No Suggested Reading articles found!