Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (10): 1273-1278    DOI: 10.11900/0412.1961.2015.00366
Current Issue | Archive | Adv Search |
CRACK INITIATION AND PROPAGATION AROUND HOLES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY DURING THERMAL FATIGUE CYCLE
Li WANG1(),Zhongjiao ZHOU1,Shaohua ZHANG1,Xiangdong JIANG2,Langhong LOU1,Jian ZHANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Beijing Beiye Functional Materials Corporation, Beijing 100192
Cite this article: 

Li WANG,Zhongjiao ZHOU,Shaohua ZHANG,Xiangdong JIANG,Langhong LOU,Jian ZHANG. CRACK INITIATION AND PROPAGATION AROUND HOLES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY DURING THERMAL FATIGUE CYCLE. Acta Metall Sin, 2015, 51(10): 1273-1278.

Download:  HTML  PDF(4652KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-based single crystal (SX) superalloys are widely used for production of blades in gas turbines and aircraft engines for their superior mechanical performance at high temperatures. To obtain high cooling efficiency, most of the SX blades consist of thin wall with cooling holes. However, thermal fatigue cracks are usually observed in blades with this kind of structures. Thus, it must be valuable to investigate the crack initiation and propagation around a hole during thermal fatigue tests in a SX superalloy. In the present work a second generation SX Ni-based superalloy was used. Plate specimens that parallel to directional solidification (DS) direction and along (100) or (110) planes were prepared. A hole with diameter of 0.5 mm was drilled vertical to the surface in the middle of the plate by electro-discharge machining (EDM). Thermal fatigue tests were performed between room temperature and 1100 ℃. Effect of crystal orientation on the crack initiation and propagation was investigated and the reasons were analyzed. It was found that a thin recast layer was produced around holes of EDM drilled. The thickness of the recast layer was 15 mm in the maximum. Crystal orientation has great effect on the crack initiation sites and propagation kinetics. After 80 cyc thermal fatigue tests, in (110) specimens cracks initiated at the edge of the holes that vertical to the DS direction, then grew quickly and propagated along directions about 45° from the DS direction. After 200 cyc tests, cracks developed to more than 2 mm in length. While in (100) specimens no cracks could be observed even after 200 cyc thermal fatigue tests. This difference was mainly due to the combined effects of different thermal stress caused by the anisotropy of single crystals and of the microstructure characteristics.

Key words:  Ni-based single crystal superalloy      crystal orientation      thermal fatigue      hole      crack initiation and propagation     
Fund: Supported by National Natural Science Foundation of China (No.51201164), National High Technology Research and Development Program of China (No.2012AA03A511) and National Key Scientific Instrument and Equipment Development Project (No.2012YQ22023304)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00366     OR     https://www.ams.org.cn/EN/Y2015/V51/I10/1273

Fig.1  Schematic of Ni-based single crystal superalloy samples for thermal fatigue tests along different crystal planes
(a) (100) specimen (b) (110) specimen
Fig.2  OM image (a) and γ’ morphology (b) of Ni-based single crystal superalloy after full heat treatment
Fig.3  Morphology of hole on (100) specimen (a) and recast layer around the hole (b) of Ni-based single crystal superalloy after electro-discharge machining
Fig.4  Crack growth kinetics curves around holes in (100) and (110) specimens
Fig.5  Morphologies of crack initiation and propagation around holes in (100) specimen (a, c, e) and (110) specimen (b, d, f) after thermal fatigue tests during room temperature to 1100 ℃ for 0 cyc (a, b), 80 cyc (c, d), 120 cyc (e, f) (Inset in Fig.5f shows the macro-morphology)
[1] He G, Li J G, Mao X M, Fu H Z. Mater Rev, 1994; (1): 12 (何 国, 李建国, 毛协民, 傅恒志. 材料导报, 1994; (1): 12)
[2] Yue Z F, Yin Z Y, Yang Z G. Aeroengine, 1997; (4): 32 (岳珠峰, 尹泽勇, 杨治国. 航空发动机, 1997; (4): 32)
[3] Ohyszko A, Kubiak K, Sieniawski J. J Achievements Mater Manuf Eng, 2009; 32(1): 66
[4] Shah D M, Cetel A. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 295
[5] Duhl D N, Cetel A D. US Pat, 4719080, 1988
[6] Harris K, Wahl J B. In: Strang A, Banks W M, Conroy R D, McColvin, Neal J C, Simpson S eds., Proc 5th Int Charles Parsons Turbine Conf, London: Cambridge University, 2000: 832
[7] Walston W S, O'hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: TMS, 1996: 27
[8] Fuchs G E. J Mater Eng Perform, 2002; 11(1): 19
[9] Hollwarth B R, Dagan L. ASME J Eng Power, 1980; 102: 994
[10] McNally C A, Folkes J, Pashby I R. Mater Sci Technol, 2004; 20: 805
[11] Kim Y J, Kim S M. Int J Heat Mass Transfer, 2004; 47: 245
[12] Hou N X, Wen Z X, Du Z X, Yue Z F. Theor Appl Fract Mech, 2007; 47: 164
[13] Das D K, Pollock T M. J Mater Proc Technol, 2009; 209: 5661
[14] Zhou Z J, Wang L, Wen J L, Lou L H, Zhang J. J Alloys Compd, 2015; 628: 158
[15] Wang J L, Chen M H, Yang L L, Zhu S L, Wang F H. Corros Sci, 2015; 98: 530
[16] Alamn M Z, Satyanarayana D V V, Chatterjee D, Sarkar R, Das D K. Mater Sci Eng, 2015; A641: 84
[17] Wang L, Zhou Z J, Jiang W G, Wang D, Shen J, Lou L H. Chin J Mater Res, 2014; 28: 663 (王 莉, 周忠娇, 姜卫国, 王 迪, 申 健, 楼琅洪. 材料研究学报, 2014; 28: 663)
[18] Sabnis P A, Maziere M, Forest S, Arakere N K, Ebrahimi F. Int J Plast, 2012; 28: 102
[19] Li Y L, Yuan C, Guo J T. Acta Metall Sin, 2006; 42: 1056 (李友林, 袁 超, 郭建亭. 金属学报, 2006; 42: 1056)
[20] Xia P C, Yu J J, Sun X F, Guan H R, Hu Z Q. Rare Met Mater Eng, 2008; 37: 50 (夏鹏成, 于金江, 孙晓峰, 管恒荣, 胡壮麒. 稀有金属材料与工程, 2008; 37: 50)
[21] Liu Y, Yu J J, Xu Y, Sun X F. Rare Met Mater Eng, 2009; 38: 59 (刘 源, 于金江, 徐 岩, 孙晓峰. 稀有金属材料与工程, 2009; 38: 59)
[22] Xiao X, Xu H, Qin X Z, Guo Y A, Guo J T, Zhou L Z. Acta Metall Sin, 2011; 47: 1129 (肖 旋, 许 辉, 秦学智, 郭永安, 郭建亭, 周兰章. 金属学报, 2011; 47: 1129)
[23] Liu J L, Jin T, Zhang J H, Hu Z Q. Acta Metall Sin, 2001; 37: 1233 (刘金来, 金 涛, 张静华, 胡壮麒. 金属学报, 2001; 37: 1233)
[24] Zhao N R, Wang Z H, Li J G, Jin T, Sun X F, Yang H C, Hu Z Q. J Mater Eng, 2008; (2): 58 (赵乃仁, 王志辉, 李金国, 金 涛, 孙晓峰, 杨洪才, 胡壮麒. 材料工程, 2008; (2): 58)
[25] Li J R, Shi Z X, Yuan H L, Liu S Z, Zhao J Q, Han M, Liu W W. J Mater Eng, 2008; (12): 6 (李嘉荣, 史振学, 袁海龙, 刘世忠, 赵金乾, 韩 梅, 刘维维. 材料工程, 2008; (12): 6)
[26] Jia Y X, Jin T, Liu J L, Sun X F, Hu Z Q. Acta Metall Sin, 2009; 45: 1364 (贾玉贤, 金 涛, 刘金来, 孙晓峰, 胡壮麒. 金属学报, 2009; 45: 1364)
[27] Hu G X,Cai X,Rong Y H. Fundamentals of Materials Science. 3rd Ed., Shanghai: Shanghai Jiaotong University Press, 2010: 431 (胡赓祥,蔡 珣,戎咏华. 材料科学基础 (第三版). 上海: 上海交通大学出版社, 2010: 431)
[28] Jin Z X. Central Iron Steel Res Inst Tech Bull, 1985; 5: 205 (金哲学. 钢铁研究总院学报, 1985; 5: 205)
[29] Academic Committee of the Superalloys,The Chinese Society for Metals. China Superalloys Handbook. Beijing: Standards Press of China, 2012 (中国金属学会高温材料分会编. 中国高温合金手册. 北京: 中国标准出版社, 2012)
[30] Chao J, Gonzalez-Carrasco J L. Mater Sci Eng, 1997; A230: 39
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] SUN Baode, WANG Jun, KANG Maodong, WANG Donghong, DONG Anping, WANG Fei, GAO Haiyan, WANG Guoxiang, DU Dafan. Investment Casting Technology and Development Trend of Superalloy Ultra Limit Components[J]. 金属学报, 2022, 58(4): 412-427.
[3] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[4] SUN Heng,LIN Xiaoping,ZHOU Bing,ZHAO Shengshi,TANG Qin,DONG Yun. Microstructures and Tensile Deformation Behavior of Directionally Solidified Mg-xGd-0.5Y Alloys[J]. 金属学报, 2020, 56(3): 340-350.
[5] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[6] WANG Li,HE Yufeng,SHEN Jian,ZHENG Wei,LOU Langhong,ZHANG Jian. Effect of Secondary Orientation on Oxidation Anisotropy Around the Holes of Single Crystal Superalloy During Thermal Fatigue Tests[J]. 金属学报, 2019, 55(11): 1417-1426.
[7] Jing GUO, Jinguo LI, Jide LIU, Ju HUANG, Xiangbin MENG, Xiaofeng SUN. Formation Mechanism of Fusion Zone in Growth of Single Crystal Superalloy with Low-Segregated Heterogeneous Seed[J]. 金属学报, 2018, 54(3): 419-427.
[8] Guangping ZHANG, Honglei CHEN, Xuemei LUO, Bin ZHANG. Progress in Thermal Fatigue of Micro/Nano-ScaleMetal Conductors[J]. 金属学报, 2018, 54(3): 357-366.
[9] Liang CHEN, Guoqun ZHAO, Gaojin CHEN, Zhaoqing LIANG, Cunsheng ZHANG. Numerical Simulation and Experimental Study on Porthole Die Extrusion Process of LZ91 Mg-Li Alloy[J]. 金属学报, 2018, 54(2): 339-346.
[10] Bo WANG,Jun ZHANG,Xuejiao PAN,Taiwen HUANG,Lin LIU,Hengzhi FU. Effects of W on Microstructural Stability of the Third Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2017, 53(3): 298-306.
[11] Bin XU,Qingxian HU,Shujun CHEN,Fan JIANG,Xiaoli WANG. NUMERICAL SIMULATION OF DYNAMIC BEHAVIOR OF KEYHOLE AND MOLTEN POOL AT K-PAW QUASI STEADY PROCESS[J]. 金属学报, 2016, 52(7): 804-810.
[12] Zhengrong YU,Xianfei DING,Lamei CAO,Yunrong ZHENG,Qiang FENG. TRANSIENT LIQUID PHASE BONDING OF SECOND AND THIRD GERNERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY WITH Hf-CONTAININGINTERLAYER ALLOY[J]. 金属学报, 2016, 52(5): 549-560.
[13] Sheng PU,Guang XIE,Li WANG,Zhiyi PAN,Langhong LOU. EFFECT OF Re AND W ON RECRYSTALLIZATION OF AS-CAST Ni-BASED SINGLE CRYSTAL SUPERALLOYS[J]. 金属学报, 2016, 52(5): 538-548.
[14] Xiaoxia JIAN,Chuansong WU. INFLUENCE OF Fe VAPOUR ON WELD POOL BEHAVIOR OF PLASMA ARC WELDING[J]. 金属学报, 2016, 52(11): 1467-1476.
[15] Guoxiang XU, Weiwei ZHANG, Peng LIU, Baoshuai DU. NUMERICAL ANALYSIS OF FLUID FLOW IN LASER+GMAW HYBRID WELDING[J]. 金属学报, 2015, 51(6): 713-723.
No Suggested Reading articles found!