Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (3): 297-302    DOI: 10.3724/SP.J.1037.2012.00507
Current Issue | Archive | Adv Search |
CONTINUOUS CASTING OF THE CLADDING 3003/4004 ALUMINUM ALLOY CIRCULAR INGOT
LI Jizhan1, FU Ying1, JIE Jinchuan1, ZHAO Jialei1, Joonpyo Park2, Jongho Kim 2,LI Tingju1
1) School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
2) Research Institute of Industrial Science and Technology (RIST), Pohang 790--600, Korea
Cite this article: 

LI Jizhan, FU Ying, JIE Jinchuan, ZHAO Jialei, Joonpyo Park, Jongho Kim,LI Tingju. CONTINUOUS CASTING OF THE CLADDING 3003/4004 ALUMINUM ALLOY CIRCULAR INGOT. Acta Metall Sin, 2013, 49(3): 297-302.

Download:  PDF(865KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cladding metals have been widely applied to many fields because they have many excellentphysical, chemical and mechanical properties that can not be obtained from the single metals. There are manyconventional processes for manufacturing cladding metals, for example roll bonding, diffusion bonding, explosivewelding, extrusion cladding and casting cladding. Among these processes, continuous casting is an ideal processto prepare cladding metals which has the advantages of high production efficiency, low production cost and goodinterface bonding. This process can make two metals contact directly by the ways of one liquid-one liquid, oneliquid-one solid or one liquid-one semi-solid and then the good metallurgical bonding can be obtained. So, thisprocess is extensively studied by researchers engaging in material processing. The process of the directwater-cooled continuous casting to fabricate cladding 3003/4004 aluminum alloy circular ingot is researched inthis paper. The 3003 aluminum alloy has excellent corrosion resistance, low strength and high melting point, whilethe 4004 aluminum alloy has poor corrosion resistance, high strength and low melting point. The cladding3003/4004 aluminum alloy material can combine the advantages of two metals and can be widely used in manyfields, especially in car engine and air conditioning heat sink. To obtain the good interface bonding, a special innermold with the single-side cooling capability was applied in this process. By the special inner mold, the two alloyscan make the contact of one liquid-one solid or one liquid-onesemi-solid on the interface. The solidification structure and elemental distribution near the interfaceof cladding ingot were systematically detected by OM, SEM and EPAM. Tensile test was carried out to evaluate theinterface bonding strength. The OM results indicated thatthe interface of cladding 3003/4004 aluminum alloy ingot was clear without gas holes and slag inclusion. Mostgrains were equiaxed in the cross-section of cladding 3003/4004 aluminum alloy circular ingot. The EPAM resultssuggested that the interdiffusion of alloy elements in 3003 and 4004 alloy occurred and there was an about 30μmwide diffusion layer near the interface. The entire tensile specimen fractured in the sides of 3003 alloy with theaverage ultimate tensile strength of 107.7 MPa, indicating that the interface bonding strength of cladding ingotwas higher than the ultimate tensile strength of 3003 alloy and the good metallurgical bonding near the interface wasobtained by this process.

Key words:  cladding ingot      continuous casting      interface morphology      interface bonding strength     
Received:  30 August 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00507     OR     https://www.ams.org.cn/EN/Y2013/V49/I3/297

[1] Sun J B, Song X Y, Wong T M, Yu Y S, Sun M, Cao Z Q, Li T J.Mater Lett, 2012; 67: 21


[2] Peng X K, Heness G, Yeung W Y.J Mater Sci, 1999; 34: 277

[3] Manesh H D, Taheri A K.Mech Mater, 2005; 37: 531

[4] Eizadjou M, Manesh H D, Janghorban K.Mater Des, 2008; 29: 909

[5] Wang T M, Li J, Du Y Y, Yang Z M, Sun J B, Cai H W, Xu J J, Li T J.Mater Res Inn, 2010; 14: 271

[6] Xiong B W, Cai C C, Wan H, Lu B P.Mater Des, 2011; 32: 2978

[7] Ramazan K, Mustafa A.J Mater Proc Technol, 2004; 152: 91

[8] Akbari--Mousavi S A A, Barrett L, Al--Hassani S T S.J Mater Proc Technol, 2008; 202: 224

[9] Ahmet D, Behcet G, Fehim F.Mater Des, 2005; 26: 497

[10] Liu D Y, Liu S C, Chen R S, Wang X F.Trans Mater Heat Treat, 2007; 28: 110

(刘德义, 刘世程, 陈汝淑, 王晓峰. 材料热处理学报, 2007; 28: 110)

[11] Qu S J, Geng L, Cao G J, Lei T Q.Acta Mater Compos Sin, 2003; 20(3): 69

(曲寿江, 耿林, 曹国剑, 雷廷权. 复合材料学报, 2003; 20(3): 69)

[12] Takeuchi E, Zene M.Iron Steel, 1997; 24: 257

[13] Wang Z T.Light Alloy Fabr Technol, 2007; 35: 1

(王祝堂. 轻合金加工技术, 2007; 35: 1)

[14] Zhang W W, Zou G F, Deng C N.Acta Metall Sin, 1998; 34: 609

(张卫文, 邹敢峰, 邓长宁. 金属学报, 1998; 34: 609)

[15] Zhang W W, Rohatgi P K, Shao M, Li Y Y.Mater Sci Eng, 2009; A505: 120

[16] Wu C J, Yu Z M, Xie J X, Wu Y.Foundry, 2004; 53: 432

(吴春京, 于治民, 谢建新, 吴渊. 铸造, 2004; 53: 432)

[17] Xie J X, Wu C J, Zhou C.Chin Pat, 01109076.6, 2002

(谢建新, 吴春京, 周成. 中国专利, 01109076.6, 2002)

[18] Xue Z Y, Qin Y Q, Wu C J.J Univ Sci Technol Beijing, 2005; 27: 706

(薛志勇, 秦延庆, 吴春京. 北京科技大学学报, 2005; 27: 706)

[19] Xue Z Y, Wu C J, Xie J X.Spec Cast Nonferrous Alloys, 2006; 26: 101

(薛志勇, 吴春京, 谢建新. 特种铸造及有色合金, 2006; 26: 101)

[20] Xu F, Zhang W W, Luo Z Q, Kang Z X.Spec Cast Nonferrous Alloys, 2007; 27: 624

(许峰, 张卫文, 罗宗强, 康志新. 特种铸造及有色合金, 2007; 27: 624)

[21] Song X Y, Sun J B, Zhong D S, Yu Y S, Wang T M, Cao Z Q, Li T J.Mater Res Inn, 2012; 16: 51

[22] Cao Z Q, Liu B, Sun J B, Song X Y, Sun M, Wang T M, Li T J.J Wuhan Univ Sci Technol, 2012; 35: 19

(曹志强, 刘彬, 孙建波, 宋晓阳, 孙敏, 王同敏, 李廷举. 武汉科技大学学报, 2012; 35: 19)

[23] Wu C H.Master Thesis, Dalian University of Technology, 2005

(吴彩虹. 大连理工大学硕士学位论文, 2005)

[24] Li Y T.Master Thesis, Dalian University of Technology, 2003

(李玉婷. 大连理工大学硕士学位论文, 2003)

[25] Zhang X Z, Na X Z, Wang Z Y, Liu A Q, Gan Y.Acta Metall Sin, 2004; 40: 281

(张兴中, 那贤昭, 王忠英, 刘爱强, 干勇. 金属学报, 2004; 40: 281)
[1] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[3] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[4] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[5] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[6] CAI Laiqiang, WANG Xudong, YAO Man, LIU Yu. Meshless Method for Non-Uniform Heat Transfer/Solidification Behavior of Continuous Casting Round Billet[J]. 金属学报, 2020, 56(8): 1165-1174.
[7] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[8] QIN Qin, LI Cheng, HE Liu, YE Chenlong, ZANG Yong. An Investigation of Interface Bonding Strength of Bimetal Plate Based on the Optimization of Asymmetric Double Cantilever Beam Model[J]. 金属学报, 2020, 56(12): 1617-1628.
[9] LI Yaqiang, LIU Jianhua, DENG Zhenqiang, QIU Shengtao, ZHANG Pei, ZHENG Guiyun. Peritectic Solidification Characteristics and Mechanism of 15CrMoG Steel[J]. 金属学报, 2020, 56(10): 1335-1342.
[10] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
[11] GUO Junli, WEN Guanghua, FU Jiaojiao, TANG Ping, HOU Zibing, GU Shaopeng. Influence of Cooling Rate on the Contraction of Peritectic Transformation During Solidification of Peritectic Steels[J]. 金属学报, 2019, 55(10): 1311-1318.
[12] Zibing HOU, Rui XU, Yi CHANG, Jianghai CAO, Guanghua WEN, Ping TANG. Time-Series Fluctuation Characteristics of Segregation Carbon Element Distribution Along Casting Direction in High Carbon Continuous Casting Billet[J]. 金属学报, 2018, 54(6): 851-858.
[13] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[14] Miaoyong ZHU, Wentao LOU, Weiling WANG. Research Progress of Numerical Simulation in Steelmaking and Continuous Casting Processes[J]. 金属学报, 2018, 54(2): 131-150.
[15] Qiang WANG, Ming HE, Xiaowei ZHU, Xianliang LI, Chunlei WU, Shulin DONG, Tie LIU. Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes[J]. 金属学报, 2018, 54(2): 228-246.
No Suggested Reading articles found!