Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1392-1398    DOI: 10.3724/SP.J.1037.2013.00410
Current Issue | Archive | Adv Search |
BRITTLE-TO-DUCTILE TRANSITION FOR T2 IN THE Mo-Si-B SYSTEM
PAN Kunming, ZHANG Laiqi, WANG Meng, LIN Junpin
State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing, Beijing 100083
Cite this article: 

PAN Kunming, ZHANG Laiqi, WANG Meng, LIN Junpin. BRITTLE-TO-DUCTILE TRANSITION FOR T2 IN THE Mo-Si-B SYSTEM. Acta Metall Sin, 2013, 49(11): 1392-1398.

Download:  PDF(3804KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The ordered intermetallic Mo5SiB2 (T2 phase) is a promising elevated-temperature structural material because of its high melting temperature, and excellent resistance to oxidation and creep. T2 phase has a body-centered tetragonal D81 structure (I4/mcm),with 20 Mo, 4 Si and 8 B atoms situating in layered arrangements along the c axis.This structure has been regarded as the obstacle to plastic deformation or dislocation activity especially at ambient temperature. However, like most intermetallic compounds, it undergoes a brittle-to-ductile transition (BDT) up to high temperatures, where the increased ductility is companied by microstructure changes. The feature of high-temperature applications makes it necessary to investigate the BDT behavior. The analysis of microstructure, dislocation configuration and fracture surfaces were carried out by compression and three-point bending tests, coupled with XRD, SEM-EDS and TEM methods. The result suggested that BDT happened over a wide temperature range of 1000-1200℃. At the BDT temperature above, multiple slip systems such as the [010](001) and <110>{110} could be activated under an applied stress, resulting in obvious plastic deformation. Since the edge dislocation displayed more activity than screw and mixed ones, the edge dislocation with b=[010] interacted with the <110>-type dislocation via slipping into its plane of {110}. Therefore, the work hardening was caused by the formation of lots of dislocation nodal points during the subsequent compression process. With temperature increasing, the fracture mode underwent a conversion from transgranular cleavage at ambient temperature to a mix of transgranular cleavage and intergranular failure.

Key words:  Mo5SiB2 (T2 phase)      compressive deformation      fracture      dislocation configuration      brittle-to-ductile transition     
Received:  15 July 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00410     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1392

[1] Ihara K, Ito K, Tanaka K, Yamaguchi M. Mater Sci Eng, 2002; A329-331: 222

[2] Lemberg J A, Ritchie R O. Adv Mater, 2012; 24: 3445
[3] Wang F, Shan A D, Dong X P, Wu J S. Trans Nonferrous Met Soc China, 2007; 17: 1242
[4] Alur A P, Chollacoop N, Kumar K S. Acta Mater, 2004; 52: 5571
[5] Hayashi T, Ito K, Ihara K, Fujikura M, Yamaguchi M. Intermetallics, 2004; 12: 699
[6] Zhang L Q, Pan K M, Lin J P. Intermetallics, 2013; 7: 49
[7] Brede M, Haasen P. Acta Mater, 1988; 35: 1735
[8] Roberts S G, Kim H S, Hirsch P B. Strength of Metals and Alloys. London: Freund House, 1991: 317
[9] Serbena F C, Roberts S G. Acta Metall Mater, 1994; 42: 2505
[10] Bergmann G, Vehoff H. Mater Sci Eng, 1995; A193: 309
[11] Booth A S, Roberts S G. Acta Mater, 1997; 45: 1045
[12] Ito K, Ihara K, Tanaka K, Fujikura M, Yamaguchi M, Intermetallics, 2001; 9: 591
[13] Sekido N, Sakidja R, Perepezko J H. Intermetallics, 2007; 15: 1268
[14] Meyer M K, Kramer M J, Akinca M. Intermetallics, 1996; 4: 273
[15] Pan K M, Zhang L Q, Wang J, Lin J P, Chen G L. Surf Interface Anal, 2013; 45: 955
[16] Zhang L Q, Pan K M, Wang J, Lin J P. Adv Powder Technol,
http://dx.doi.org/10.1016/j.apt.2013.01.003
[17] Shigeki N, Taeko A, Mitsuhiro S, Kazuo S. J Micromech Microeng, 2008; 18: 1
[18] Huang X Y. The Microstructure of Materials and its Electron Microcopy Analysis.
Beijing: Metallurgical Industry Press, 2008: 430
(黄孝瑛. 材料微观结构的电子显微学分析. 北京: 冶金工业出版, 2008: 430)
[19] Kenzaburo M. J Electron Microsc, 1991; 40: 229
[20] Field R D, Thoma D J, Cooley J C, Chua F, Fu C L, Yoo M H, Hults W L, Cady C M. Intermetallics, 2001; 9: 863
[21] Gregory R D, Wan F Y M. Int J Solid Struct, 1985; 10: 1005
[22] Zheng W W, Yang W Y, Sun Z Q. Acta Metall Sin, 2000; 36: 1161
(郑为为, 杨王玥, 孙祖庆. 金属学报, 2000; 36: 1161)
[23] Zheng W W, Yang W Y , Sun Z Q. Mater Sci Eng, 2001; A299: 46
[1] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[2] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[3] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[4] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[5] FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. 金属学报, 2022, 58(11): 1427-1440.
[6] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[7] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[9] YANG Jie, WANG Lei. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. 金属学报, 2020, 56(6): 840-848.
[10] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[11] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
[12] ZHU Jian, ZHANG Zhihao, XIE Jianxin. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. 金属学报, 2020, 56(12): 1592-1604.
[13] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[14] Li ZHOU,Pengfei ZHANG,Quanzhao WANG,Bolü XIAO,Zongyi MA,Tao YU. Multi-Scale Study on the Fracture Behavior of Hot Compression B4C/6061Al Composite[J]. 金属学报, 2019, 55(7): 911-918.
[15] JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy[J]. 金属学报, 2019, 55(12): 1561-1568.
No Suggested Reading articles found!