Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1381-1386    DOI: 10.3724/SP.J.1037.2013.00401
Current Issue | Archive | Adv Search |
EFFECT OF OXYGEN ON MICROSTRUCTURE AND PHASE TRANSFORMATION OF HIGH Nb CONTAINING TiAl ALLOYS
WU Zeen, HU Rui, ZHANG Tiebang, ZHOU Huan, KOU Hongchao, LI Jinshan
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

WU Zeen, HU Rui, ZHANG Tiebang, ZHOU Huan, KOU Hongchao, LI Jinshan. EFFECT OF OXYGEN ON MICROSTRUCTURE AND PHASE TRANSFORMATION OF HIGH Nb CONTAINING TiAl ALLOYS. Acta Metall Sin, 2013, 49(11): 1381-1386.

Download:  PDF(1490KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to the low density, high specific strength, elastic modulus and oxidation resistance at high temperature, TiAl-based alloys have attracted much attention as a candidate of the next generation high temperature materials in aerospace and automobile application. Meanwhile, the excellent properties oxidation resistance, creep strength and tensile strength at the elevated temperature make the high Nb containing TiAl alloys be one of the promising development directions of future TiAl alloys. During the studies about alloying which is an efficient way to improve the performance of TiAl alloys, researchers have found that interstitial atoms B, C and N notably refine the grains and then improve mechanical properties including yield strength, micro-hardness, and tensile ductility of TiAl alloys. During the melting, casting, forging and the application environment, the TiAl alloys also are always inevitable to be contaminated by the O. In this work, the high Nb containing Ti-46Al-8Nb-xO alloys (atomic fraction) were prepared by non-consumable vacuum arc remelting under the protection of Ar atmosphere. The aim of the present work is to study the influence and the corresponding mechanism of oxygen atoms on the microstructure evolution and phase transformation of high Nb-TiAl alloys. The results indicate that oxygen atoms in Ti-46Al-8Nb-xO alloys remarkably increase the amount of α2 phase. The increasing oxygen content leads to the grain refinement. Meanwhile, the duplex microstructures translate into fully lamellar. It indicates that the interstitial oxygen essentially reduces the kinetics of α→γ. Consequently, the fully lamellar is easier formation than the duplex microstructures. It is found that interstitial oxygen atoms preserve significantly influence on the microstructure of Ti-46Al-8Nb-xO alloys. With the increase of oxygen content, the β solidification translates into αsolidification and the peritectic reaction α+L→γ moves to a lower Al content. At the same time, the eutectoid reactionα→α2+β shifts to a higher Al content which extends the area of α $ phase. The DSC results show the effect of oxygen on the phase transformation of Ti-46Al-8Nb. The DSC curves indicate that the addition of oxygen increases the eutectoid reaction temperature of Ti-46Al-8Nb-xO alloys, but this effect can be gradually reduced with the further increase of oxygen content.

Key words:  high Nb containing TiAl alloy      interstitial oxygen      solidification behavior      phase transformation     
Received:  11 July 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00401     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1381

[1] Wu X, Hu D, Loretto M H.  J Mater Sci, 2004; 39: 3935

[2] Zhang W J, Lorenz U, Appel F.  Acta Metall, 2000; 48: 2803
[3] Loria E A.  Intermetallics, 2000; 8: 1339
[4] Dimiduk D M.  Mater Sci Eng, 1999; A263: 281
[5] Appel F, Oehring M.  Titanium and Titanium Alloys: Fundamentals and Applications.1st Ed., Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2003: 89
[6] Imayev R M, Imayev V M, Oehring M, Appel F.  Intermetallics, 2007; 15: 415
[7] Watson I J, Liss K D, Clemens H, Wallgram W, Schmoelzer T, Hansen T C,Reid M.  Adv Eng Mater, 2009; 11: 932
[8] Xu X J, Lin J P, Wang Y L, Gao J F, Lin Z, Chen G L.  J Alloys Compd, 2006; 414: 131
[9] Wang Y H, Lin J P, He Y H, Wang Y L, Chen G L.  Mater Sci Eng, 2007; A471: 82
[10] Hu D, Mei J F, Wickins M, Harding R A.  Scr Mater, 2002; 47: 273
[11] Scheu C, Stergar E, Schober M, Cha L, Clemens H, Bartels A, Schimansky F P,Cerezo A.  Acta Metall, 2009; 57: 1504
[12] Kartavykh A V, Tcherdyntsev V V, Zollinger J.  Mater Chem Phys, 2010; 119: 347
[13] Dong L M, Cui Y Y, Yang Y.  Acta Metall Sin, 2002; 38: 643
(董利民, 崔玉友, 杨锐. 金属学报, 2002; 38: 643)
[14] Zollinger J, Lapin J, Daloz D, Combeau H.  Intermetallics, 2007; 15: 1343
[15] Lamirand M, Bonnentien J L, Ferriere G, Guerin S, Chevalier J P.Scr Mater, 2007; 56: 325
[16] Chen G L, Xu X J, Teng Z K, Wang Y L, Lin J P.  Intermetallics, 2007; 15: 625
[17] Zhong H, Yang Y L, Li J S, Wang J, Zhang T B, Li S, Zhang J.Mater Lett, 2012; 83: 198
[18] Chen G L, Lin J P.  Physical Metallurgy for Ordered Intermetallics.Beijing: Metallurgical Industry Press, 1999: 1
(陈国良, 林均品. 有序金属间化合物结构材料物理金属学基础. 北京: 冶金工业出版社, 1999: 1)
[19] Appel F, Wagner R.  Mater Sci Eng, 1998; R22: 187
[20] Wu X.  Intermetallics, 2006; 14: 1114
[21] Ohnuma, I, Fujita Y, Mitsui H, Ishikawa K, Kainuma R, Ishida K.  Acta Metall, 2000; 48: 3113
[22] Menand, A, Huguet A, Nerac-Partaix A.  Acta Metall, 1996; 44: 4729
[23] Lefebvre W, Loiseau A, Thomas M, Menand A.  Philos Mag, 2002; 82A: 2341
[24] Lamirand M, Bonnentien J L, Ferriere G, Guerin S, Chevalier J P.Metall Mater Trans, 2006; 37A: 2369
[25] Jin Y, Wang J N, Yang J, Wang Y.  Scr Mater, 2004; 51, 113
[26] Cheng T T.   Intermetallics, 2000; 8: 29
[27] Perdrix F, Trichet M F, Bonnentien J L, Cornet M, Bigot J.  Intermetallics, 2001; 9: 807
[28] Park H S, Nam S W, Kim N J, Hwang S K.   Scr Mater, 1999; 41: 1197
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[7] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[8] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[9] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[10] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[11] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[12] ZHU Weiqiang, YU Muzhi, TANG Xu, CHEN Xiaoyang, XU Zhengbing, ZENG Jianmin. Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy[J]. 金属学报, 2020, 56(11): 1485-1494.
[13] Chen GU, Ping YANG, Weimin MAO. The Influence of Rolling Process on the Microstructure, Texture and Magnetic Properties of Low Grades Non-Oriented Electrical Steel After Phase Transformation Annealing[J]. 金属学报, 2019, 55(2): 181-190.
[14] SHI Zhangzhi, ZHANG Min, HUANG Xuefei, LIU Xuefeng, ZHANG Wenzheng. Research Progress in Age-Hardenable Mg-Sn Based Alloys[J]. 金属学报, 2019, 55(10): 1231-1242.
[15] Zhirong HE, Peize WU, Kangkai LIU, Hui FENG, Yuqing DU, Rongyao JI. Microstructure, Phase Transformation and Shape Memory Behavior of Chilled Ti-47Ni Alloy Ribbons[J]. 金属学报, 2018, 54(8): 1157-1164.
No Suggested Reading articles found!