|
|
FINITE ELEMENT ANALYSIS OF TEMPERATURE FIELD IN LASER+GMAW HYBRID WELDING FOR T-JOINT OF ALUMINUM ALLOY |
XU Guoxiang, WU Chuansong, QIN Guoliang, WANG Xuyou |
1) Key Laboratory of Advanced Welding Technology of Jiangsu Province, Jiangsu University of Science and Technology, Zhenjiang 212003
2) Key Laboratory for Liquid-Solid Structure Evolution and Materials Processing (Ministry of Education), Shandong University, Jinan 250061
3) Harbin Welding Institute, China Academy of Machinery Science & Technology, Harbin 150080 |
|
Cite this article:
XU Guoxiang WU Chuansong QIN Guoliang WANG Xuyou. FINITE ELEMENT ANALYSIS OF TEMPERATURE FIELD IN LASER+GMAW HYBRID WELDING FOR T-JOINT OF ALUMINUM ALLOY. Acta Metall Sin, 2012, 48(9): 1033-1041.
|
Abstract T-welded structures of aluminum alloy are increasingly used in automotive, railway vehicles, aerospace and bridges. However, compared with the simple joint, the T-joint of aluminum alloy is more difficultly welded due to its complex temperature distribution and fluid flow mode in the weld pool. Whether using laser welding or the conventional arc welding process, aluminum alloy T-wleded joint is more prone to welding defects such as crack, pore, undercutting, joint softening, and so on. As a promising joining technology, laser+gas metal arc welding (laser+GMAW) hybrid welding not only combines the advantages of laser welding with those of GMAW, but also overcomes their shortcomings, thus having great potential to achieve high efficiency and high quality welding of aluminum alloy T-joint. So far, however, there is a lack of fundamental investigations involving mathematical modelling and understanding of the hybrid welding process of aluminum alloy T-joint. As key factors determining the weld quality, thermal field has a significant influence on microstructure and properties of T-welded joint. In this work, using the numerical simulation method, the temperature distribution in laser+GMAW hybrid welding of aluminum alloy T-joint was studied. Considering the influence of joint form on welding heat flux, an adaptive combined volumetric heat source model for laser+GMAW hybrid welding for T-joint is developed based on macroscopic mechanism of heat transfer. The arc heat flux and heat content of overheated droplet are described using an double ellipsoid body heat source model, and the laser power is regarded as peak density exponentially increasing-conic body distribution. To take into account the effect of inclination of welding gun on heat flow distribution in T-joint welding, the heat source model is rotated by way of coordinate transformation, thus deducing the formula of combined heat source model suitable to hybrid welding for T-joint. The built model is used to calculate the geometry and dimensions in laser+GMAW hybrid both-sided welding for T-joint of aluminum alloy under different welding conditons, and the simulated resluts agree well with the experimental ones, which indicates the accuracy and applicability of the combined model. Besides, the thermal cycles at different positions in hybrid welding for T-joint of aluminum alloy are computed, and the characteristics of the thermal cycles are analyzed, which will lay the foundation for prediction of microstructure and properties of welded joint.
|
Received: 05 April 2012
|
Fund: Supported by Sino-Russia Cooperation Research Project of China (No.2009DFR50170) |
[1] Zuo T C. Laser Processing of High–Strengh Aluminum Alloy. Beijing: National Defence Industry Press, 2002: 60(左铁钏. 高强铝合金的激光加工. 北京: 国防工业出版社, 2002: 60)[2] Zhang S H, Chen K, Xiao R S, Zuo T C. Laser J, 2005; 26(4): 45(张盛海, 陈铠, 肖荣诗, 左铁钏. 激光杂志, 2005; 26(4): 45)[3] Defalco J. Weld J, 2007; 86(10): 47[4] Graf T, Staufer H. Weld J, 2003; 82(1): 42[5] Bagger C, Olsen F O. J Laser Appl, 2005; 17: 2[6] Mahrle A, Beyer E. J Laser Appl, 2006; 18: 169[7] Rayes M, Walz C, Sepold G. Weld J, 2004; 83(5): 147[8] Alessandro A, Alessandro F, Leonardo O, Giampaolo C. Opt Laser Technol, 2012; 44: 1485[9] Xu L H, Tian Z L, Peng Y, Zhang X M. Trans China Weld Inst, 2007; 28(2): 38(许良红, 田志凌, 彭云, 张晓牧. 焊接学报, 2007; 28(2): 38)[10] Wang J, Takenaka Y, Hongu T, Fujii K, Katayama S. Weld Int, 2007; 21(1): 32[11] Jiang Y Q, Gu L, Liu J H. Trans China Weld Inst, 2006; 27(6): 104(姜幼卿, 辜磊, 刘建华. 焊接学报, 2006; 27(6): 104)[12] Gu L. Master Dissertation, Huazhong University of Science and Technology, Wuhan, 2008(辜磊. 华中科技大学硕士学位论文, 武汉, 2008)[13] Jiao C J. Master Dissertation, Beijing Industry Universty, 2009(焦传江. 北京工业大学硕士学位论文, 2009)[14] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2008; 44: 478(胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2008; 44: 478)[15] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2008; 44: 641(胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2008; 44: 641)[16] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2009; 45: 107(胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2009; 45: 107)[17] Zhou J, Tsai H L. Int J Heat Mass Trans, 2008; 51: 4353[18] Cho M H, Farson D F. Weld J, 2007; 86(9): 253[19] Cho J H, Na S J. Weld J, 2009; 88(2): 35[20] Piekarska W, Kubiak M. Int J Heat Mass Trans, 2011; 54: 4966[21] Le Guen E, Fabbro R, Carin M, Coste F. Opt Laser Technol, 2011; 45: 1155[22] Zhang Z Z, Xu G X, Wu C S. Acta Metall Sin, 2011; 47: 1045(张转转, 胥国祥, 武传松. 金属学报, 2011; 47: 1045)[23] Wu C S. Welding Thermal Process and Weld Pool Behaviour. Beijing: China Machine Press, 2007: 24(武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2007: 24)[24] Zhang M X, Wu C S, Li K H, Zhang Y M. Trans China Weld Inst, 2007; 28(2): 33(张明贤, 武传松, 李克海, 张玉明. 焊接学报, 2007; 28(2): 33)[25] Duan Y G. Master Dissertation, Shanghai Jiaotong University, 2003(段永钢. 上海交通大学硕士学位论文, 2003)[26] Zhou W S, Yao J S. Welding of Aluminum and It’s Alloy. Beijing: China Machine Press, 2006: 80(周万盛, 姚君山. 铝及铝合金的焊接. 北京: 机械工业出版社, 2006: 80) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|