Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1042-1048    DOI: 许家誉, 男, 1987年生, 硕士生
论文 Current Issue | Archive | Adv Search |
STUDY ON LEAD-FREE SOLDER JOINT RELIABILITY BASED ON GRAIN ORIENTATION
XU Jiayu, CHEN Hongtao,  LI Mingyu
1)  Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055
2)  State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001
Cite this article: 

XU Jiayu CHEN Hongtao LI Mingyu. STUDY ON LEAD-FREE SOLDER JOINT RELIABILITY BASED ON GRAIN ORIENTATION. Acta Metall Sin, 2012, 48(9): 1042-1048.

Download:  PDF(2391KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  During service, coefficient of thermal expansion (CTE) mismatch between different materials in electronic devices can lead to stress and strain concentration, and the creep and fatigue damage will accumulate, leading to final failure of solder joints. The main constituent of Pb-free solder joint is β-Sn, which is body-centered tetragonal metal. There is big difference in CTE and elastic modulus along different directions of β-Sn, showing strong anisotropy. Therefore, solder joints with different orientations show quite different thermo-mechanical responses. In this study, ball grid array (BGA) assemblies were subjected to thermal cycling, and the orientation of the solder joints was characterized by EBSD to track the orientation evolution in different solder joints. Surface Evolver was adopted to simulate the three-dimensional shape of the solder joint. Based on the shape and grain structure of real lead-free solder joints, the thermal stress and strain distribution in BGA assemblies under thermal loading were computed. Sub-model based on grain numbers and orientation distribution is solved to get the strain distribution of the three typical solder joints. The experimental and simulated results show that grain orientation significantly influences the solder joint reliability and failure mode. For single-grained solder joints, stress and strain concentration is located in the solder bulk near the interface, where recrystallization accompanied with initiation and propagation of cracks.  However, for multi-grained solder joints, the distribution of stress and strain depends on grain orientation. Recrystallization and cracking tend to divert from the interfacial region into the solder bulk along the pre-existing grain boundary. Some special solder joints with grain boundary perpendicular to the interface are not favorable for deformation, exhibiting higher reliability. When the grain boundary inclined at 45o to the pad, the original grain boundaries produce large stress and strain concentration under combined action of shear stress and anisotropy of Sn grains, accelerating the crack initiation and propagation, and fracture occurred along the original grain boundaries, increasing the probability of early failure.
Key words:  lead-free interconnect solder      grain orientation      finite element simulation     
Received:  04 June 2012     
ZTFLH: 

TB302.3

 
Fund: 

Supported by National Natural Science Foundation of China (No.50905042) and State Key Laboratory of Advanced Welding and Joining Foundation,
Harbin Institute of Technology (No.AWPT-M12-02)

URL: 

https://www.ams.org.cn/EN/许家誉, 男, 1987年生, 硕士生     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1042

[1] Telang A U, Bieler T R, Choi S, Subramanian K N. J Mater Res, 2002; 17: 2294

[2] Zeng K, Tu K N. Mater Sci Eng, 2002; R38: 55

[3] Bieler T R, Jiang H R, Lehman L, Kirkpatrick T, Cotts E, Nandagopal B. IEEE Trans Components Packag Technol, 2008; 31: 370

[4] Wang YW, Lu K H, Guta V, Stiborek L, Shirley D, Chae S H, Im J, Ho P S. J Mater Res, 2012; 27: 1131

[5] Son P V, Fujitsuka A, Ohshima K I. J Electron Mater, 2012; 41: 1893

[6] Henderson DW,Woods J J, Gosselin T A, Bartelo J, King D E, Korhonen T M, Korhonen M A, Lehman L P, Cotts E J, Kang S K, Lauro P, Shih D Y, Goldsmith C, Puttlitz K J. J Mater Res, 2004; 19: 1608

[7] Mattila T T, Vuorinen V, Kivilahti J K. J Mater Res, 2004; 19: 3214

[8] Telang A U, Bieler T R, Zamiri A, Pourboghrat F. Acta Mater, 2007; 55: 2265

[9] Zhou B, Bieler T R, Lee T K, Liu K C. J Electron Mater, 2010; 39: 2669

[10] Chen H T, Mueller M, Mattila T T, Li J, Liu X W, Wolter K J, Paulasto M. J Mater Res, 2011; 26: 2103

[11] Chen H T, Wang L, Han J, Li M Y,Wu Q B, Kim J M. J Electron Mater, 2011; 40: 2445

[12] Chen H T, Han J, Li J, Li M Y. Microelectron Reliab, 2012; 52: 1112

[13] Chen H T, Han J, Li M Y. J Electron Mater, 2011; 40: 2470

[14] Lee T K, Zhou B, Bieler T, Liu K C. J Electron Mater, 2012; 41: 273

[15] Lee T K, Xie W, Zhou B, Bieler T, Liu K C. J Electron Mater, 2011; 40: 1967

[16] Vandevelde B, Gonzalez M, Limaye P, Ratchev P, Beyne E. Microelectron Reliab, 2007; 47: 259

[17] Gong S G, Xie G L, Huang Y Q. ANSYS APDL and Command Manual. Beijing: China Mechine Press, 2009: 235

(龚曙光, 谢桂兰, 黄云清. ANSYS参数化编程与命令手册. 北京: 机械工业出版社, 2009: 235)

[18] Zhang X, Lee R. Int J Microcircuits Electron Packag, 1998; 21: 253

[19] Zhang L, Hunter B, Subarayan G. IEEE Trans Components Packag Technol, 1999; 22: 525

[20] Brown S B, Kim K H, Anand L. Int J Plast, 1989; 5(2): 95

[21] Park S, Dhakal B, Gao J. J Electron Mater, 2008; 37: 1139

[22] Lehman L P, Xing Y, Bieler T R, Cotts E J. Acta Mater, 2010; 58: 3546

[23] Wang Y W, Lu K H, Gupta V, Stiborek L, Shirley D, Chae S H, Im J, Ho P S. J Mater Res, 2012; in press, doi: 10.1557/jmr.2012.10
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[3] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[4] JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. 金属学报, 2020, 56(10): 1433-1440.
[5] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[6] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[7] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[8] Shuangming LI, Binqiang WANG, Zhenpeng LIU, Hong ZHONG, Rui HU, Yi LIU, Ximing LUO. Grain Orientation Competitive Growth of High Melting Point Metals Ir and Mo Under Electron Beam Floating Zone Melting[J]. 金属学报, 2018, 54(10): 1435-1441.
[9] Yu LIU, Shengwei QIN, Xunwei ZUO, Nailu CHEN, Yonghua RONG. Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders[J]. 金属学报, 2017, 53(6): 733-742.
[10] Hai ZHANG,Shilei LI,Gang LIU,Yanli WANG. Effects of Hot Working on the Microstructure and Thermal Ageing Impact Fracture Behaviors of Z3CN20-09MDuplex Stainless Steel[J]. 金属学报, 2017, 53(5): 531-538.
[11] FENG Rui, ZHANG Meihan, CHEN Nailu, ZUO Xunwei, RONG Yonghua. FINITE ELEMENT SIMULATION OF THE EFFECT OF STRESS RELAXATION ON STRAIN-INDUCED MARTENSITIC TRANSFORMATION[J]. 金属学报, 2014, 50(4): 498-506.
[12] LIU Renci, WANG Zhen, LIU Dong, BAI Chunguang, CUI Yuyou, YANG Rui. MICROSTRUCTURE AND TENSILE PROPERTIES OF Ti-45.5Al-2Cr-2Nb-0.15B ALLOY PROCESSED BY HOT EXTRUSION[J]. 金属学报, 2013, 49(6): 641-648.
[13] ZHANG Hang, XU Qingyan, SUN Changbo, QI Xiang,TANG Ning, LIU Baicheng. SIMULATION AND EXPERIMENTAL STUDIES ON GRAIN SELECTION BEHAVIOR OF SINGLE CRYSTAL SUPERALLOY :I. Starter Block[J]. 金属学报, 2013, 49(12): 1508-1520.
[14] ZHANG Hang, XU Qingyan, SUN Changbo, QI Xiang,TANG Ning, LIU Baicheng. SIMULATION AND EXPERIMENTAL STUDIES ON GRAIN SELECTION BEHAVIOR OF SINGLE  CRYSTAL SUPERALLOY :II. Spiral Part[J]. 金属学报, 2013, 49(12): 1521-1531.
[15] WU Bo WEI Yueguang TAN Jiansong WANG Jianping. NUMERICAL SIMULATIONS OF THE INTERGRANULAR FRACTURE IN NANOCRYSTALLINE Ni[J]. 金属学报, 2009, 45(9): 1077-1082.
No Suggested Reading articles found!