Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (8): 1026-1031    DOI: 10.3724/SP.J.1037.2011.00145
论文 Current Issue | Archive | Adv Search |
OXIDIZING–SULFIDIZING CORROSION OF Ni–xCr–10Al ALLOYS AT 700—800 ℃
LU Lanying 1, PAN Taijun 2, NIU Yan 1
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. Department of Material Science and Engineering, Changzhou University, Changzhou 213164
Cite this article: 

LU Lanying PAN Taijun NIU Yan. OXIDIZING–SULFIDIZING CORROSION OF Ni–xCr–10Al ALLOYS AT 700—800 ℃. Acta Metall Sin, 2011, 47(8): 1026-1031.

Download:  PDF(712KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion behavior of Ni–10Al and Ni–xCr–10Al (x=3, 5, 10) alloys at 700—800 ℃ in H2–H2S–CO2 mixtures was studied. The addition of Cr resulted in a ignificant reduction of the corrosion rate of the Ni–10Al alloy: at 700℃ the corrosion of Ni–10Al alloy showed a linear kinetic law, but Ni–xCr–10Al followed the multi–stage parabolic rate law; at 800 ℃ the corrosion of all the alloys followed a quasi–parabolic rate law. Ni–10Al alloy formed a complex scale of Ni3S2 and Al2O3, whereas Ni–3Cr–10Al formed an irregular scale of Al2O3 with a CrS inner corrosion region, and a thinlayer of Al2O3 formed on Ni–5Cr–10Al and Ni–10Cr–10Al alloys. The equilibrium partial pressures of oxygen and sulfur in the mixed gases were calculated to estimate the possible reactions between the alloy components and the gaseous atmosphere, and the corrosion mechanisms were also discussed.
Key words:  Ni–Cr–Al alloy      oxidation      sulfidation      Cr     
Received:  21 March 2011     
ZTFLH: 

TG172.3

 
Fund: 

Supported by National Natural Science Foundation of China(No.50971129)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00145     OR     https://www.ams.org.cn/EN/Y2011/V47/I8/1026

[1] Natesan K. Corrosion, 1985; 41: 646

[2] Gesmundo F, Young D J, Roy S K. High Temp Mater Process, 1989; 8: 149

[3] Stringer J. In: Embury J D ed., High–Temperature Oxidation and Sulfidation Processes. New York: Pergamon Press, 1990: 257

[4] Mrowec S, Przybylski K. High Temp Mater Process, 1984; 6: 1

[5] Mrowec S, Przybylski K. Oxid Met, 1985; 23: 107

[6] He Y R, Douglass D L, Gesmundo F. Oxid Met, 1992; 37: 413

[7] He Y R, Douglass D L, Gesmundo F. Oxid Met, 1992; 37: 217

[8] Niu Y, Gesmundo F, Viani F. Corros Sci, 1994; 36: 1885

[9] Niu Y, Gesmundo F, Viani F, Rizzo F. Corros Sci, 1994; 36: 1973

[10] Fu G Y, Niu Y, Wu W T. Trans Nonferrous Met Soc China, 2002; 12: 874

[11] Fu G Y, Niu Y, Wu W T. Chin Rare Earth, 2002; 23: 16

(付广艳, 牛焱, 吴维tao. 稀土, 2002; 23: 16)

[12] Fu G Y, Niu Y, Wu W T. Rare Met Mater Eng, 2004; 33:417

(付广艳, 牛焱, 吴维tao. 稀有金属材料与工程, 2004; 33: 417)

[13] Fu G Y, Niu Y, Wu W T. Acta Metall Sin, 1999; 35: 221

(付广艳, 牛焱, 吴维tao. 金属学报, 1999; 35: 221)

[14] Regina J R, DuPont J N, Marder A R. Mater Sci Eng, 2005; A404: 71

[15] Regina J R, DuPont J N, Marder A R. Mater Sci Eng, 2005; A405: 102

[16] KaiW, ChangMT, Liu C D, Chiang D L, Chu J P. Mater Sci Eng, 2002; A329: 734

[17] Kai W, Chu J P, Huang R T, Lee P Y. Mater Sci Eng, 1997; A39: 859

[18] Brady M P, Tortorelli P F, More K L, Walker L R. Oxid Met, 2010; 74: 1

[19] Zhang X J, Wang S Y, Gesmundo F, Niu Y. Oxid Met, 2006; 65: 151

[20] Niu Y, Zhang X J, Wu Y, Gesmundo F. Corros Sci, 2006; 48: 4020

[21] Giggins C S, Petti F S. J Electrochem Soc, 1971; 118: 1782

[22] Stott F H, Wood G C. Corros Sci, 1971; 11: 799

[23] Kostad p. High Temperature Corrosion, London: Eleviser, 1988: 425

[24] Giggins C S, Pettit F S. Oxid Met, 1980; 14: 363

[25] He Y R, Douglass D L. Oxid Met, 1993; 40: 337

[26] Kai W, Huang R T. Oxid Met, 1997; 48: 59

[27] Devan J H, Tortorelli P F. Corros Sci, 1993; 35: 1065
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[7] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[8] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[9] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[10] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[11] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[12] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[13] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[14] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[15] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
No Suggested Reading articles found!