|
|
OXIDIZING–SULFIDIZING CORROSION OF Ni–xCr–10Al ALLOYS AT 700—800 ℃ |
LU Lanying 1, PAN Taijun 2, NIU Yan 1 |
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. Department of Material Science and Engineering, Changzhou University, Changzhou 213164 |
|
Cite this article:
LU Lanying PAN Taijun NIU Yan. OXIDIZING–SULFIDIZING CORROSION OF Ni–xCr–10Al ALLOYS AT 700—800 ℃. Acta Metall Sin, 2011, 47(8): 1026-1031.
|
Abstract The corrosion behavior of Ni–10Al and Ni–xCr–10Al (x=3, 5, 10) alloys at 700—800 ℃ in H2–H2S–CO2 mixtures was studied. The addition of Cr resulted in a ignificant reduction of the corrosion rate of the Ni–10Al alloy: at 700℃ the corrosion of Ni–10Al alloy showed a linear kinetic law, but Ni–xCr–10Al followed the multi–stage parabolic rate law; at 800 ℃ the corrosion of all the alloys followed a quasi–parabolic rate law. Ni–10Al alloy formed a complex scale of Ni3S2 and Al2O3, whereas Ni–3Cr–10Al formed an irregular scale of Al2O3 with a CrS inner corrosion region, and a thinlayer of Al2O3 formed on Ni–5Cr–10Al and Ni–10Cr–10Al alloys. The equilibrium partial pressures of oxygen and sulfur in the mixed gases were calculated to estimate the possible reactions between the alloy components and the gaseous atmosphere, and the corrosion mechanisms were also discussed.
|
Received: 21 March 2011
|
|
Fund: Supported by National Natural Science Foundation of China(No.50971129) |
[1] Natesan K. Corrosion, 1985; 41: 646[2] Gesmundo F, Young D J, Roy S K. High Temp Mater Process, 1989; 8: 149[3] Stringer J. In: Embury J D ed., High–Temperature Oxidation and Sulfidation Processes. New York: Pergamon Press, 1990: 257[4] Mrowec S, Przybylski K. High Temp Mater Process, 1984; 6: 1[5] Mrowec S, Przybylski K. Oxid Met, 1985; 23: 107[6] He Y R, Douglass D L, Gesmundo F. Oxid Met, 1992; 37: 413[7] He Y R, Douglass D L, Gesmundo F. Oxid Met, 1992; 37: 217[8] Niu Y, Gesmundo F, Viani F. Corros Sci, 1994; 36: 1885[9] Niu Y, Gesmundo F, Viani F, Rizzo F. Corros Sci, 1994; 36: 1973[10] Fu G Y, Niu Y, Wu W T. Trans Nonferrous Met Soc China, 2002; 12: 874[11] Fu G Y, Niu Y, Wu W T. Chin Rare Earth, 2002; 23: 16(付广艳, 牛焱, 吴维tao. 稀土, 2002; 23: 16)[12] Fu G Y, Niu Y, Wu W T. Rare Met Mater Eng, 2004; 33:417(付广艳, 牛焱, 吴维tao. 稀有金属材料与工程, 2004; 33: 417)[13] Fu G Y, Niu Y, Wu W T. Acta Metall Sin, 1999; 35: 221(付广艳, 牛焱, 吴维tao. 金属学报, 1999; 35: 221)[14] Regina J R, DuPont J N, Marder A R. Mater Sci Eng, 2005; A404: 71[15] Regina J R, DuPont J N, Marder A R. Mater Sci Eng, 2005; A405: 102[16] KaiW, ChangMT, Liu C D, Chiang D L, Chu J P. Mater Sci Eng, 2002; A329: 734[17] Kai W, Chu J P, Huang R T, Lee P Y. Mater Sci Eng, 1997; A39: 859[18] Brady M P, Tortorelli P F, More K L, Walker L R. Oxid Met, 2010; 74: 1[19] Zhang X J, Wang S Y, Gesmundo F, Niu Y. Oxid Met, 2006; 65: 151[20] Niu Y, Zhang X J, Wu Y, Gesmundo F. Corros Sci, 2006; 48: 4020[21] Giggins C S, Petti F S. J Electrochem Soc, 1971; 118: 1782[22] Stott F H, Wood G C. Corros Sci, 1971; 11: 799[23] Kostad p. High Temperature Corrosion, London: Eleviser, 1988: 425[24] Giggins C S, Pettit F S. Oxid Met, 1980; 14: 363[25] He Y R, Douglass D L. Oxid Met, 1993; 40: 337[26] Kai W, Huang R T. Oxid Met, 1997; 48: 59[27] Devan J H, Tortorelli P F. Corros Sci, 1993; 35: 1065 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|