Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 397-402    DOI: 10.3724/SP.J.1037.2011.00015
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURAL EVOLUTION OF DIRECTIONALLY SOLIDIFIED Ni-BASED SUPERALLOY DZ125 UNDER HIGH TEMPERATURE GRADIENT
MIN Zhixian, SHEN Jun, XIONG Yilong, WANG Wei, DU Yujun, LIU Lin, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

MIN Zhixian SHEN Jun XIONG Yilong WANG Wei DU Yujun LIU Lin FU Hengzhi. MICROSTRUCTURAL EVOLUTION OF DIRECTIONALLY SOLIDIFIED Ni-BASED SUPERALLOY DZ125 UNDER HIGH TEMPERATURE GRADIENT. Acta Metall Sin, 2011, 47(4): 397-402.

Download:  PDF(921KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The Ni-based superalloy DZ125 was prepared by liquid metal cooling (LMC) directional solidification and quenching technology with withdrawal rate ($V$) range of 2-400 μm/s and temperature gradient up to 250 K/cm. The morphologies of solid/liquid (S/L) interface, cellular/dendritic arm spacings and the morphologies of MC carbide were studied systematically. The shallow cellular interface arised at V=2 μm/s. With increasing the withdrawal rate, the S/L interface turns into deep cellular (V=3 μm/s) and dendritic (V≧5 μm/s) interfaces successively. The cellular spacing is increased with increasing the withdrawal rate. However, the primary dendritic arm spacing is decreased with increasing the withdrawal rate. The maximum value of cellular/dendritic spacings appears at transition from cellular to dendritic interfaces (V=5 μm/s). Meanwhile, the morphology of MC carbide changes from octahedron to frame-like, Chinese-script and finally to fine dendrite with increasing the withdrawal rate. Compared with the theoretical models of primary dendrite spacing, the results are good in agreement with Trivedi's and Ma's models. Furthermore, they are also in agreement with Hunt-Lu model only at lower withdrawal rates (V≦50 μm/s). The relationships of primary and secondary dendritic arm spacings with withdrawal rates can be described as λ1=314.6V-0.24±0.02  and λ2=97.76V-0.33±0.01, respectively. MC carbide precipitated from the melt during solidification, and its morphology is dependent both on the withdrawal rate and the morphology of S/L interface.
Key words:  Ni-based superalloy      directional solidification      microstructure      dendritic spacing     
Received:  10 January 2011     
ZTFLH: 

TG113.12

 
Fund: 

Supported by National Natural Science Foundation of China (No.50827102), the Research Fund of State Key Laboratory of Solidification Processing (NWPU) (No.28-TP-2009)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00015     OR     https://www.ams.org.cn/EN/Y2011/V47/I4/397

[1] Fu H Z. Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 162

(傅恒志. 先进材料定向凝固. 北京: 科学出版社, 2008: 162)

[2] Pollock T M, Murphy W H. Metall Mater Trans, 1996; 27A: 1081

[3] Giamei A F, Tschinkel J G. Metall Trans, 1974; 7A: 1427

[4] Elliott A J, Tin S, King W T, Huang S C, Gigliotti M F X, Pollock T M. Metall Mater Trans, 2004; 35A: 3221

[5] Elliott A J, Pollock T M. Metall Mater Trans, 2007; 38A: 871

[6] Kermanpur A, Varahhram N, Davami P, Rappaz M. Metall Mater Trans, 2004; 31B: 1293

[7] Zhao X B, Liu L, Yu Z H, Zhang W G, Zhang J, Fu H Z. J Mater Sci, 2010; 45: 6101

[8] Zhao K, Ma Y H, Lou L H. J Alloy Compd, 2009; 475: 648

[9] Zhou Y Z, Volek A, Green N R. Acta Mater, 2008; 56: 2631

[10] Liu L, Huang T W, Zhang J, Fu H Z. Mater Lett, 2007; 61: 227

[11] Somboonsuk K, Mason J T, Trivedi R. Metall Mater Trans, 1984; 15A: 967

[12] McCartney D G, Hunt J D. Acta Metall, 1981; 29: 1851

[13] Hunt J D. Solidification and Casting of Metals. London: The Metals Society, 1979: 3

[14] Kurz W, Fisher D J. Acta Metall, 1981; 29: 11

[15] Trivedi R. Metall Mater Trans, 1984; 15A: 977

[16] Hunt J D, Lu S Z. Metall Mater Trans, 1996; 27A: 611

[17] Ma D, Sahm P R. Metall Mater Trans, 1998; 29A: 1113

[18] Liu G, Liu L, Zhao X B, Zhang W G, Jin T, Zhang J, Fu H Z. Acta Metall Sin, 2010; 46: 77

(刘 刚, 刘林, 赵新宝, 张卫国, 金涛, 张军, 傅恒志. 金属学报, 2010; 46: 77)

[19] Guo X P, Fu H Z, Sun J H. Metall Mater Trans, 1997; 28A: 997

[20] Min Z X, Shen J, Wang L S, Feng Z R, Liu L, Fu H Z. Acta Metall Sin, 2010; 46: 1075

(闵志先, 沈军, 王灵水, 冯周荣, 刘 林, 傅恒志. 金属学报, 2010; 46: 1075)

[21] Kurz W, Fisher D J. Fundamentals of Solidification. Switzerland: Trans Tech Publications Ltd., 1998: 63

[22] Guo Y G, Li S M, Liu L, Fu H Z. Acta Metall Sin, 2008; 44: 365

(郭勇冠, 李双明, 刘林, 傅恒志. 金属学报, 2008; 44: 365)

[23] Wagner A, Shollock B A, McLean M. Mater Sci Eng, 2004; A374: 270

[24] Al–Jarba K A, Fuchs G E. Mater Sci Eng, 2004; A373: 255

[25] Vijayakumar M, Tewari S N. Mater Sci Eng, 1991; A132: 195

[26] Whitesell H S, Overfelt R A. Mater Sci Eng, 2001; A318: 264

[27] Kattamis T Z, Flemings M C. Trans TMS–AIME, 1965; 233: 992

[28] Min Z X, Shen J, Feng Z R, Wang L S, Liu L, Fu H Z. Acta Metall Sin, 2010; 46: 1543

(闵志先, 沈军, 冯周荣, 王灵水, 刘林, 傅恒志. 金属学报, 2010; 46: 1543)

[29] Liu L, Fu H Z, Shi Z X. Acta Metall Sin, 1989; 25: A282

(刘林, 傅恒志, 史正兴. 金属学报, 1989; 25: A282)

[30] Fernandez R, Lecomte J C, Kattamis T Z. Metall Mater Trans, 1978; 9A: 1381

[31] Sun W R, Lee J H, Seo S M, Choe S J, Hu Z Q. Mater Sci Eng, 1999; A271: 143

[32] Zhou Y Z, Volek A. Mater Sci Eng, 2008; A479: 324

[33] Tin S, Pollock TM, MurphyW. Metall Mater Trans, 2001; 32A: 1743

[34] Tin S, Pollock T M. Metall Mater Trans, 2003; 34A: 1953
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[8] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[12] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[13] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[14] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!