|
|
MICROSTRUCTURAL EVOLUTION OF DIRECTIONALLY SOLIDIFIED Ni-BASED SUPERALLOY DZ125 UNDER HIGH TEMPERATURE GRADIENT |
MIN Zhixian, SHEN Jun, XIONG Yilong, WANG Wei, DU Yujun, LIU Lin, FU Hengzhi |
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072 |
|
Cite this article:
MIN Zhixian SHEN Jun XIONG Yilong WANG Wei DU Yujun LIU Lin FU Hengzhi. MICROSTRUCTURAL EVOLUTION OF DIRECTIONALLY SOLIDIFIED Ni-BASED SUPERALLOY DZ125 UNDER HIGH TEMPERATURE GRADIENT. Acta Metall Sin, 2011, 47(4): 397-402.
|
Abstract The Ni-based superalloy DZ125 was prepared by liquid metal cooling (LMC) directional solidification and quenching technology with withdrawal rate ($V$) range of 2-400 μm/s and temperature gradient up to 250 K/cm. The morphologies of solid/liquid (S/L) interface, cellular/dendritic arm spacings and the morphologies of MC carbide were studied systematically. The shallow cellular interface arised at V=2 μm/s. With increasing the withdrawal rate, the S/L interface turns into deep cellular (V=3 μm/s) and dendritic (V≧5 μm/s) interfaces successively. The cellular spacing is increased with increasing the withdrawal rate. However, the primary dendritic arm spacing is decreased with increasing the withdrawal rate. The maximum value of cellular/dendritic spacings appears at transition from cellular to dendritic interfaces (V=5 μm/s). Meanwhile, the morphology of MC carbide changes from octahedron to frame-like, Chinese-script and finally to fine dendrite with increasing the withdrawal rate. Compared with the theoretical models of primary dendrite spacing, the results are good in agreement with Trivedi's and Ma's models. Furthermore, they are also in agreement with Hunt-Lu model only at lower withdrawal rates (V≦50 μm/s). The relationships of primary and secondary dendritic arm spacings with withdrawal rates can be described as λ1=314.6V-0.24±0.02 and λ2=97.76V-0.33±0.01, respectively. MC carbide precipitated from the melt during solidification, and its morphology is dependent both on the withdrawal rate and the morphology of S/L interface.
|
Received: 10 January 2011
|
|
Fund: Supported by National Natural Science Foundation of China (No.50827102), the Research Fund of State Key Laboratory of Solidification Processing (NWPU) (No.28-TP-2009) |
[1] Fu H Z. Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 162(傅恒志. 先进材料定向凝固. 北京: 科学出版社, 2008: 162)[2] Pollock T M, Murphy W H. Metall Mater Trans, 1996; 27A: 1081[3] Giamei A F, Tschinkel J G. Metall Trans, 1974; 7A: 1427[4] Elliott A J, Tin S, King W T, Huang S C, Gigliotti M F X, Pollock T M. Metall Mater Trans, 2004; 35A: 3221[5] Elliott A J, Pollock T M. Metall Mater Trans, 2007; 38A: 871[6] Kermanpur A, Varahhram N, Davami P, Rappaz M. Metall Mater Trans, 2004; 31B: 1293[7] Zhao X B, Liu L, Yu Z H, Zhang W G, Zhang J, Fu H Z. J Mater Sci, 2010; 45: 6101[8] Zhao K, Ma Y H, Lou L H. J Alloy Compd, 2009; 475: 648[9] Zhou Y Z, Volek A, Green N R. Acta Mater, 2008; 56: 2631[10] Liu L, Huang T W, Zhang J, Fu H Z. Mater Lett, 2007; 61: 227[11] Somboonsuk K, Mason J T, Trivedi R. Metall Mater Trans, 1984; 15A: 967[12] McCartney D G, Hunt J D. Acta Metall, 1981; 29: 1851[13] Hunt J D. Solidification and Casting of Metals. London: The Metals Society, 1979: 3[14] Kurz W, Fisher D J. Acta Metall, 1981; 29: 11[15] Trivedi R. Metall Mater Trans, 1984; 15A: 977[16] Hunt J D, Lu S Z. Metall Mater Trans, 1996; 27A: 611[17] Ma D, Sahm P R. Metall Mater Trans, 1998; 29A: 1113[18] Liu G, Liu L, Zhao X B, Zhang W G, Jin T, Zhang J, Fu H Z. Acta Metall Sin, 2010; 46: 77(刘 刚, 刘林, 赵新宝, 张卫国, 金涛, 张军, 傅恒志. 金属学报, 2010; 46: 77)[19] Guo X P, Fu H Z, Sun J H. Metall Mater Trans, 1997; 28A: 997[20] Min Z X, Shen J, Wang L S, Feng Z R, Liu L, Fu H Z. Acta Metall Sin, 2010; 46: 1075(闵志先, 沈军, 王灵水, 冯周荣, 刘 林, 傅恒志. 金属学报, 2010; 46: 1075)[21] Kurz W, Fisher D J. Fundamentals of Solidification. Switzerland: Trans Tech Publications Ltd., 1998: 63[22] Guo Y G, Li S M, Liu L, Fu H Z. Acta Metall Sin, 2008; 44: 365(郭勇冠, 李双明, 刘林, 傅恒志. 金属学报, 2008; 44: 365)[23] Wagner A, Shollock B A, McLean M. Mater Sci Eng, 2004; A374: 270[24] Al–Jarba K A, Fuchs G E. Mater Sci Eng, 2004; A373: 255[25] Vijayakumar M, Tewari S N. Mater Sci Eng, 1991; A132: 195[26] Whitesell H S, Overfelt R A. Mater Sci Eng, 2001; A318: 264[27] Kattamis T Z, Flemings M C. Trans TMS–AIME, 1965; 233: 992[28] Min Z X, Shen J, Feng Z R, Wang L S, Liu L, Fu H Z. Acta Metall Sin, 2010; 46: 1543(闵志先, 沈军, 冯周荣, 王灵水, 刘林, 傅恒志. 金属学报, 2010; 46: 1543)[29] Liu L, Fu H Z, Shi Z X. Acta Metall Sin, 1989; 25: A282(刘林, 傅恒志, 史正兴. 金属学报, 1989; 25: A282)[30] Fernandez R, Lecomte J C, Kattamis T Z. Metall Mater Trans, 1978; 9A: 1381[31] Sun W R, Lee J H, Seo S M, Choe S J, Hu Z Q. Mater Sci Eng, 1999; A271: 143[32] Zhou Y Z, Volek A. Mater Sci Eng, 2008; A479: 324[33] Tin S, Pollock TM, MurphyW. Metall Mater Trans, 2001; 32A: 1743[34] Tin S, Pollock T M. Metall Mater Trans, 2003; 34A: 1953 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|