Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (2): 140-144    DOI: 10.3724/SP.J.1037.2010.00523
论文 Current Issue | Archive | Adv Search |
EFFECT OF ORIGINAL ORIENTATION ON MICROTEXTURE EVOLUTION OF AZ31 Mg ALLOY
WU Xinxing1), YANG Xuyue1, 2), ZHANG Lei1), ZHANG Zhiling1)
1) School of Materials Science and Engineering, Central South University, Changsha 410083
2) Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083
Cite this article: 

WU Xinxing YANG Xuyue ZHANG Lei ZHANG Zhiling. EFFECT OF ORIGINAL ORIENTATION ON MICROTEXTURE EVOLUTION OF AZ31 Mg ALLOY. Acta Metall Sin, 2011, 47(2): 140-144.

Download:  PDF(761KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The deformation behavior of AZ31 Mg alloy was studied in the temperature range from 523 to 723 K under a strain rate of 3×10-3 s-1. Cuboid samples with different orientations were machined from an extruded rod along angles of 0o, 45o and 90o to the extrusion direction, respectively. The effects of original orientation on microtexture evolution were analysed by OM and SEM/EBSD techniques. The results showed that the true stress-true strain curves were sensitive to original orientation especially below 623 K. Extensive {1012} tension twins were formed at 523 K in the 0o samples and the volume fraction of twins increased rapidly to 90\% at a strain of ε=0.3. Namely, the basal planes initially parallel to the compression axis rotated quickly by twinning to an orientation perpendicular to the compression axis. In contrast, the volume fraction of {1012} twinning in the 45o or 90o samples was lower than 10%. The initial texture in the 90o sample scarcely changes and the relative intensity decreased with increasing strain.
Key words:  Mg alloy      original orientation      tension twinning      microtexture evolution     
Received:  07 October 2010     
Fund: 

Supported by National Natural Science Foundation of China (No.51071182)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00523     OR     https://www.ams.org.cn/EN/Y2011/V47/I2/140

[1] Liu Q. Acta Metall Sin, 2010; 46: 1458

(刘庆. 金属学报, 2010; 46: 1458)

[2] Yang X Y, Jiang Y P. Acta Metall Sin, 2010; 46: 451

(杨续跃, 姜育培. 金属学报, 2010; 46: 451)

[3] Koike J, Kobayashi T, Mukai T, Watanabe H, Suzuki M, Maruyama K, Higashi K. Acta Mater, 2003; 51: 2055

[4] Helis L, Okayasu K, Fukutomi H. Mater Sci Eng, 2006; A430: 98

[5] Yi S B, Davies C H J, Brokmeier H G, Bolmaro R E, Kainer K U, Homeyer J. Acta Mater, 2006; 54: 549

[6] Jiang J, Godfrey A, Liu W, Liu Q. Mater Sci Eng, 2008; A483–484: 576

[7] Yang X Y, Miura H, Sakai T. Mater Trans, 2003; 44: 197

[8] Jiang L, Jonas J J, Mishra R K, Luo A A, Sachdev A K, Godet S. Acta Mater, 2007; 55: 3899

[9] Al–Samman T, Gottstein G. Mater Sci Eng, 2008; A488: 406

[10] Yang P, Cui F E, Bian J H, Gottstein G. Trans Nonferrous Met Soc China, 2003; 13: 280

[11] Gottstein G, Al–Samman T. Mater Sci Forum, 2005; 495–497: 623

[12] Mark D N, Matthew R B. Scr Mater, 2004; 51: 881

[13] Yu K, Rui S T, Wang X Y, Wang R C, Li W X. Trans Nonferrous Met Soc China, 2009; 19: 511

[14] Nave M D, Barnett M R. Scr Mater, 2004; 51: 881

[15] Koike J, Sato Y, Ando D. Mater Trans, 2008; 49: 2792

[16] Al–Samman T, Gottstein G. Mater Sci Eng, 2008; A490: 411

[17] Li X, Yang P, Wang N, Meng L, Cui F. Mater Sci Eng, 2009; A517: 160

[18] Yang X Y, Zhang L, Jiang Y P, Zhu Y K. Chin J Nonferrous Met, in press

(杨续跃, 张雷, 姜育培, 朱亚坤. 中国有色金属学报, 待发表)
[1] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[3] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[4] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[5] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[6] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[7] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[8] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
[9] WANG Kaidong, LIU Yunzhong, ZHAN Qiangkun, HUANG Bin. Effect of Adding Methods of Nucleating Agent on Microstructure and Mechanical Properties of Zr Modified Al-Cu-Mg Alloys Prepared by Selective Laser Melting[J]. 金属学报, 2022, 58(10): 1281-1291.
[10] WANG Yue, WANG Jijie, ZHANG Hao, ZHAO Hongbo, NI Dingrui, XIAO Bolv, MA Zongyi. Effects of Heat Treatments on Microstructure and Mechanical Properties of AlSi10Mg Alloy Produced by Selective Laser Melting[J]. 金属学报, 2021, 57(5): 613-622.
[11] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[12] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[13] ZHOU Bo, SUI Manling. Generation and Interaction Mechanism of Tension Kink Band in AZ31 Magnesium Alloy[J]. 金属学报, 2019, 55(12): 1512-1518.
[14] SHI Zhangzhi, ZHANG Min, HUANG Xuefei, LIU Xuefeng, ZHANG Wenzheng. Research Progress in Age-Hardenable Mg-Sn Based Alloys[J]. 金属学报, 2019, 55(10): 1231-1242.
[15] Jinhui LIU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Comparative Study on Corrosion Behavior of Cast and Forged Mg-5Y-7Gd-1Nd-0.5Zr Alloys[J]. 金属学报, 2018, 54(8): 1141-1149.
No Suggested Reading articles found!