Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (2): 129-139    DOI: 10.3724/SP.J.1037.2010.00422
论文 Current Issue | Archive | Adv Search |
PHASE FIELD SIMULATION OF EFFECTS OF PORES ON B2-R PHASE TRANSFORMATION IN NiTi SHAPE MEMORY ALLOY
KE Changbo, MA Xiao, ZHANG Xinping
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
Cite this article: 

KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF EFFECTS OF PORES ON B2-R PHASE TRANSFORMATION IN NiTi SHAPE MEMORY ALLOY. Acta Metall Sin, 2011, 47(2): 129-139.

Download:  PDF(1637KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Recently, porous NiTi shape memory alloys (SMAs) have drawn great interest in various engineering fields, in particular for biomedical applications as one of the promising biomaterials for hard-tissue replacements and orthopedic implants. It is well known that the porous NiTi SMAs exhibit three transformations, B2-B19', B2-R and R-B19'. Among these phase transformations B2-B19' and R-B19' involve high lattice distortion and large transformation hysteresis. Consequently, these distortion and transformations usually introduce structural defects which may result in degradation of mechanical stability for the functional application. On the contrary, B2-R transformation is governed by small lattice distortion which indicates less damage to the microstructure and lower sensitivity to the defects, and thus generates higher reversibility and mechanical stability. Due to these unique virtues, it is of great importance to study the R-phase transformation behavior in porous NiTi SMAs, since the pore has a significant influence on B19' martensitic transformation as well as the R-phase transformation. In this paper, a three-dimensional phase field model aiming at accounting for the pore effect on phase transformation in NiTi SMAs was developed to study the B2-R phase transformation behavior in porous NiTi SMAs. The model was applied to characterize the microstructure evolution of B2-R phase transformation as well as the influence of porosity ratio and pore size on growth kinetics of R-phase variants. The simulation results show that the R-phase variants can form three-dimensional banded structure and two-dimensional herring-bone microstructure through self-accommodation between R-phase variants. The R-phase variants nucleate preferentially around the pores, and there are more R-phase variants to nucleate around the large pores than the smaller ones. Two types of twinning planes are found, which are {101}B2 and {001}B2 respectively, and four variants meet at <010>B2. It has been shown that the average size of R-phase variants decreases with increasing porosity ratio, but increases with increasing pore size. Moreover, the average size of R-phase variants decreases in NiTi system containing irregular pores compared to that the system containing regular circular pores. The size uniformity of R-phase variants increases with increasing porosity ratio but shows no sensitivity to pore size and pore shape. It is also shown that the B2-R transformation can generate uniform and fine R--phase microstructure only when the NiTi matrix contains a large number of small size pores.
Key words:  porous NiTi shape memory alloy      B2-R phase transformation      growth kinetics      phase field approach      morphology evolution     
Received:  25 August 2010     
ZTFLH: 

TG142

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50871039 and 50801029) and Chinese Government Graduate Student Overseas Study Program (No.2008615024)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00422     OR     https://www.ams.org.cn/EN/Y2011/V47/I2/129

[1] Zhang Y P, Li D S, Zhang X P. Scr Mater, 2007; 57: 1020

[2] Bansiddhi A, Sargeant T D, Stupp S I, Dunand D C. Acta Biomater, 2008; 4: 773

[3] Kim J I, Li Y, Miyazaki S. Acta Mater, 2004; 52: 487

[4] Dautovich D P, Purdy G R. Can Metall Q, 1965; 4: 129

[5] Sandrock G D, Perkins A J, Hehemann R F. Metall Mater Trans, 1971; 2B: 2769

[6] Hwang C M, Meichle M, Salamon M B, WaymanC M. Philos Mag, 1983; 47A: 9

[7] Hwang C M, Meichle M, Salamon M B, WaymanC M. Philos Mag, 1983; 47A: 31

[8] Lin H C,Wu S K, Chou T S, Kao H P. Acta Metall Mater, 1991; 39: 2069

[9] Miyazaki S, Igo Y, Otsuka K. Acta Metall, 1986; 34: 2045

[10] Miyazaki S, Otsuka K. Metall Trans, 1986; 17A: 53

[11] Michutta J, Somsen C, Yawny A, Dlouhy A, Eggeler G. Acta Mater, 2006; 54: 3525

[12] Bataillard L, Bidaux J E, Gotthardt R. Philos Mag, 1998; 78A: 327

[13] Stroz D, Kwarciak J, Morawiec H. J Mater Sci, 1988; 23: 4127

[14] Allafi J K, Ren X, Eggeler G. Acta Mater, 2002; 50: 793

[15] Yuan B, Zhang X P, Chung C Y, Zhu M. Mater Sci Eng, 2006; A438–440: 585

[16] Wu S L, Liu X M, Chu P K, Chuang C Y, Chu C L, Yeung K W K. J Alloys Compd, 2008; 449: 139

[17] Wang Y, Khachaturyan A G. Acta Mater, 1997; 45: 759

[18] Khachaturyan A G. Theory of Structural Transformation in Solids. New York: Wiley–Interscience, 1983: 213

[19] Man J, Zhang J H, Rong Y H. Acta Metall Sin, 2010; 46: 775

(满 蛟, 张骥华, 戎咏华. 金属学报, 2010; 46: 775)

[20] Artemev A, Wang Y, Khachaturyan A G. Acta Mater, 2000; 48: 2503

[21] Jin Y M, Artemev A, Khachaturyan A G. Acta Mater, 2001; 49: 2309

[22] Wang Y, Li J. Acta Mater, 2010; 58: 1212

[23] Ke C B, Ma X, Zhang X P. Acta Metall Sin, 2010; 46: 84

(柯常波, 马骁, 张新平. 金属学报, 2010; 46: 84)

[24] Otsuka K, Ren X. Prog Mater Sci, 2005; 50: 511

[25] Miyazaki S, Wayman C M. Acta Metall, 1998; 36: 181

[26] Li D S, Zhang Y P, Zhang X P. J Alloys Compd, 2009; 474: L1

[27] Wang Y U. Acta Mater, 2006; 54: 953

[28] Wang Y, Ren X, Otsuka K, Saxena A. Acta Mater, 2008; 56: 2885

[29] Man J, Zhang J H, Rong Y H. Appl Phys Lett, 2010; 96: 131904

[30] Bhattacharya K, Kohn R V. Acta Mater, 1996; 44: 529

[31] Wagner M F, Windl W. Acta Mater, 2008; 56: 6232

[32] Wang G, Xu D S, Ma N, Zhou N, Payton E J, Yang R, Mills M J, Wang Y. Acta Mater, 2009; 57: 316

[33] Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50: 1023

[34] Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50: 1029

[35] Wang Y, Banerjee D, Su C C, Khachaturyan A G. Acta Mater, 1998; 46: 2983

[36] Fukuda T, Saburi T, Doi K, Nenno S. Mater Trans JIM, 1992; 33: 271

[37] Ke C B, Ma X, Zhang X P. Acta Metall Sin, 2010; 46: 921

(柯常波, 马骁, 张新平. 金属学报, 2010; 46: 921)

[38] Ren X, Wang Y, Otsuka K, Lloveras P, Castan T, Porta M, Planes A, Saxena A. MRS Bull, 2009; 34: 838

[39] Ren X, Wang Y, Zhou Y M, Zhang Z, Wang D, Fan G, Otsuka K, Suzuki T, Ji Y, Zhang J, Tian Y, Hou S, Ding X D. Philos Mag, 2010; 90: 141
[1] Huidong WU,Chi ZHANG,Wenbo LIU,Zhigang YANG. SIMULATION OF GROWTH KINETICS OF PRO-EUTECTOID FERRITE USING MIXED CONTROL MODEL WITH CONSIDERATION OF DISLOCATION INTERACTION[J]. 金属学报, 2015, 51(9): 1136-1144.
[2] Wenjing MA,Changbo KE,Minbo ZHOU,Shuibao LIANG,Xinping ZHANG. PHASE-FIELD CRYSTAL SIMULATION ON EVOLU- TION AND GROWTH KINETICS OF KIRKENDALL VOIDS IN INTERFACE AND INTERMETALLIC COMPOUND LAYER IN Sn/Cu SOLDERING SYSTEM[J]. 金属学报, 2015, 51(7): 873-882.
[3] KE Changbo, ZHOU Minbo, ZHANG Xinping. PHASE FIELD SIMULATION ON MICROSTRUCTURE EVOLUTION AND GROWTH KINETICS OF Cu6Sn5 INTERMETALLIC COMPOUND DURING EARLY INTERFACIAL REACTION IN Sn/Cu SOLDERING SYSTEM[J]. 金属学报, 2014, 50(3): 294-304.
[4] HAN Guomin, HAN Zhiqiang, Alan A. Luo, Anil K. Sachdev, LIU Baicheng. PHASE FIELD SIMULATION ON MORPHOLOGY OF CONTINUOUS PRECIPITATE Mg17Al12IN Mg-Al ALLOY[J]. 金属学报, 2013, 49(3): 277-283.
[5] ZHOU Minbo, MA Xiao, ZHANG Xinping. THE INTERFACIAL REACTION AND INTERMETALLIC COMPOUND GROWTH BEHAVIOR OF BGA STRUC-TURE Sn-3.0Ag-0.5Cu/Cu SOLDER JOINT AT LOW REFLOW TEMPERATURES[J]. 金属学报, 2013, 49(3): 341-350.
[6] KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF THE EFFECT OF APPLIED EXTERNAL STRESS ON GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi ALLOY[J]. 金属学报, 2010, 46(8): 921-929.
[7] YANG Yujuan YAN Biao. THREE DIMENSIONAL MULTI-PHASE FIELD SIMULATION OF GROWTH OF EUTECTIC CBr4-C2Cl6 ALLOY
I. Modeling and Testing
[J]. 金属学报, 2010, 46(7): 781-786.
[8] YANG Yujuan YAN Biao. THREE DIMENSIONAL MULTI-PHASE FIELD SIMULATION OF GROWTH OF EUTECTIC CBr4-C2Cl6  ALLOY
II. Effect of Lamellar Spacing on Morphology Evolution
[J]. 金属学报, 2010, 46(7): 787-793.
[9] LIU Zhiyuan YANG Zhigang LI Zhaodong LIU Zhenqing ZHANG Chi. SIMULATION OF LEDGEWISE GROWTH KINETICS OF PROEUTECTIOD FERRITE UNDER INTERFACIAL REACTION–DIFFUSION MIXED CONTROL MODEL[J]. 金属学报, 2010, 46(4): 390-395.
[10] KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY[J]. 金属学报, 2010, 46(1): 84-90.
[11] . MODELING DYNAMIC RECRYSTALLIZATION OF PURE COPPER USING CELLULAR AUTOMATON METHOD[J]. 金属学报, 2008, 44(3): 292-296 .
[12] Hai-Chang JIANG. Ni RELEASING BEHAVIOR OF POROUS TiNi SHAPE MEMORY ALLOY[J]. 金属学报, 2008, 44(2): 198-202 .
[13] ;. EFFECT OF APPLIED STRAIN FIELD ON THE MICROSTRUCTURE OF Ti-25Al-10Nb ALLOY BY PHASE FIELD SIMULATION[J]. 金属学报, 2006, 42(5): 549-553 .
[14] YANG Liu; ZHU Degui; ZHANG Jun; CHEN Jian (Southwestern Jiaotong University; Chengdu). IN SITU OBSERVATION OF GROWTH OF BAINITE IN Fe-Ni ALLOY[J]. 金属学报, 1994, 30(8): 344-347.
[15] Correspondent: YANG Yanqing; Department of Physics; Nanjing University; Nanjing 210008 YANG Yanqing;LIU Donghui;KANG Mokuang;SUN Yuan Northwestern Polytechnical University Beijing Centre of Physical and Chemical Analysis. HIGH-TEMPERATURE TEM IN SITU STUDY OF GROWTH KINETICS OF BAINITE IN β BRASS[J]. 金属学报, 1992, 28(3): 1-5.
No Suggested Reading articles found!