Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (2): 145-151    DOI: 10.3724/SP.J.1037.2010.00426
论文 Current Issue | Archive | Adv Search |
STUDY ON RUST LAYERS AND PITTING CORROSION RESISTANCE OF Ni-Cu-P STEEL EXPOSED IN MARINE SPLASH ZONE
CAO Guoliang, LI Guoming, CHEN Shan, CHANG Wanshun, CHEN Xuequn
Department of Chemistry and Materials, College of Sciences, Naval University of Engineering, Wuhan 430033
Cite this article: 

CAO Guoliang LI Guoming CHEN Shan CHANG Wanshun CHEN Xuequn. STUDY ON RUST LAYERS AND PITTING CORROSION RESISTANCE OF Ni-Cu-P STEEL EXPOSED IN MARINE SPLASH ZONE. Acta Metall Sin, 2011, 47(2): 145-151.

Download:  PDF(1621KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Ni-Cu-P steel is well known as a seawater corrosion resistance steel due to strong corrosion resistance in marine splash zone. However, corrosion resistance mechanisms of alloying elements in Ni-Cu-P steel remain unclear. Because the steel exhibits obvious characteristic of pitting corrosion in marine splash zone, rust layers and pitting corrosion resistance were investigated in this study. The experimental steels were smelted in vacuum induction melting furnace. In order to evaluate the corrosion resistance of Ni-Cu-P steel, hanging plate test was performed in marine splash zone for 660 d. Rust layers formed on the steel surfaces were studied by means of scanning electro microscopy (SEM), energy dispersive analysis of X-ray (EDAX), Fourier transform infrared resonance (FTIR) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results indicated that average corrosion rate and pit penetration of Ni-Cu-P steel was obviously smaller than that of carbon steel after exposure test. For all the steels, the inner and outer rust layers were composed of α-FeOOH, β-FeOOH, γ-FeOOH, δ-FeOOH, Fe3O4 and a small amount of amorphous oxides. However, the inner rust layer exhibited higher content of Fe3O4 and lower content of γ-FeOOH and δ-FeOOH than the outer rust layer. Under the same condition, the rust layers both in macro cathodic region and pits of Ni-Cu-P steel were much more compact than those of carbon steel. According to the composition and distribution of alloying elements, Ni, Cu and P were mainly observed in the inner rust layer and pits, and Cu and P were found to enrich in pits. In macro cathodic region, alloying element Cu made inner rust grains small and dense.  In corrosive pits, Cu was observed to enrich around inclusions in the rust layer, which could repair and fill the slots and holes of the rust layer in pits. Additionally, addition of alloying elements Cu and Ni improved potential of matrix in pits, and alloy element P led to a decrease in the corrosion rate of matrix. Therefore, Ni-Cu-P steel exhibited stronger pitting corrosion resistance than carbon steel.
Key words:  Ni-Cu-P steel      carbon steel      splash zone      rust layer     
Received:  30 August 2010     
ZTFLH: 

TG172.5

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00426     OR     https://www.ams.org.cn/EN/Y2011/V47/I2/145

[1] Matsushima I, translated by Jin Y K. Low Alloy Corrosion Resistant Steel—A History of Development Application and Research. Beijin: Metallurgical Industry Press, 2004: 100

(松岛  岩, 靳裕康, 译. 低合金钢耐蚀钢---开发、发展及研究. 北京: 冶金工业出版社, 2004: 100)

[2] Melchers R E. Corros Sci, 2004; 46: 1669

[3] Huang J Z, Zuo Y. Resistance to Corrosion and Corrosive Data of Materials. Beijin: Chemical Industry Press, 2003: 97

(黄建中, 左 禹. 材料的耐蚀性和腐蚀数据. 北京: 化学工业出版社, 2003: 97)

[4] Townsend H E. Corrosion, 2001; 57: 497

[5] Suzuki S, Takahashi Y, Kamimura T, Miyuhi H, Shinoda K, Tohji K, Waseda Y. Corros Sci, 2004; 46: 1751

[6] Wang JM, Chen X Q, Li G M. J Univ Sci Technol Beijing (Engl Ed), 2004; 11: 555

[7] Cao G L, Li G M, Chen S, Chang W S, Chen X Q. Acta Metall Sin, 2010; 46: 748

(曹国良, 李国明, 陈 珊, 常万顺, 陈学群. 金属学报, 2010; 46: 748)

[8] Cui X L, Wang X R, Ma J H, Zhang L, Huang G Q. J Iron Steel Res, 1995; 7(4): 43

(崔秀岭, 王相润, 马巾华, 张陆, 黄桂桥. 钢铁研究学报, 1995; 7(4): 43)

[9] Zhang Q C, Wu J S, Zheng W L, Wang J J. J Mater Sci Technol, 2002; 18: 455

[10] Choi Y S, Shim J J, Kim J G. Mater Sci Eng, 2004; A385: 148

[11] Kimura M, Kihira H, Ohta N, Hashimoto M. Corros Sci, 2005; 47: 2499

[12] Ishikawa T, Maeda A, Kandori K. Corrosion, 2006; 62: 559

[13] Chen Y Y, Tzeng H J, Wei L I, Wang L H, Oung J C, Shih H C. Corros Sci, 2005; 47: 1001

[14] Chen X H, Dong J H, Han E H. Mater Lett, 2007; 61: 4050

[15] Zhang C, Cai D, Liao B, Zhao T, Fan Y. Mater Lett, 2004; 58: 1524

[16] Yang W, Gu J X, Li Q S, Xiao J X. Localized Corrosion of Metals. Beijin: Chemical Industry Press, 1995: 59

(杨 武, 顾\濬祥, 黎樵燊 , 肖京先. 金属的局部腐蚀. 北京: 化学工业出版社, 1995: 59)

[17] Wang J M, Chen X Q, Chang W S, Zhu X. J Harbin Inst Technol, 2006; 38: 1943

(王建民, 陈学群, 常万顺, 朱 锡. 哈尔滨工业大学学报, 2006; 38: 1943)

[18] Li Q X, Wang Z Y, Han W, Han E H. Acta Phys Chim Sin, 2008; 24: 1459

(李巧霞, 王振尧, 韩 薇, 韩恩厚. 物理化学学报, 2008; 24: 1459)

[19] Stratmann M, Bohnenkamp K, Ramchandran T. Corros Sci, 1987; 27: 905

[20] Dillmann P, Balasubramaniam R, Beranger G. Corros Sci, 2002; 44: 2231

[21] Bijayani P, Balasubramaniam R, Gopal D. Corros Sci, 2008; 50: 1684

[22] Yang X Z, Yang W. Corrosive Electrochemical Thermodynamic Potential—pH Diagram and Application of Metals. Beijin: Chemical industry Press, 1991: 138

(杨熙珍, 杨 武. 金属腐蚀电化学热力学电位-pH图及其应用. 北京: 化学工业出版社, 1991: 138)

[23] Sourisseau T, Chauveau E, Baroux B. Corros Sci, 2005; 47: 1117

[24] Kihira H, Ito S, Murata T. Corros Sci, 1990; 31: 383

[25] Zhang H, Chen X Q, Chang W S. J Univ Sci Technol Beijing, 2008; 30: 1133

(张恒, 陈学群, 常万顺. 北京科技大学学报, 2008; 30: 1133)
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[3] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[4] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[5] LIU Yuwei, GU Tianzhen, WANG Zhenyao, WANG Chuan, CAO Gongwang. Corrosion Behavior of Q235 and Q450NQR1 Exposed to Marine Atmospheric Environment in Nansha, China for 34 Months[J]. 金属学报, 2022, 58(12): 1623-1632.
[6] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[7] LIU Yuwei, ZHAO Hongtao, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel and Weathering Steel in Nansha Marine Atmosphere[J]. 金属学报, 2020, 56(9): 1247-1254.
[8] SONG Xuexin, HUANG Songpeng, WANG Chuan, WANG Zhenyao. The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe[J]. 金属学报, 2020, 56(10): 1355-1365.
[9] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[10] Canshuai LIU,Zhaohui TIAN,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN. Corrosion Behaivour of X65 Low Carbon Steel During Redox State Transition Process of High LevelNuclear Waste Disposal[J]. 金属学报, 2019, 55(7): 849-858.
[11] Zibing HOU, Rui XU, Yi CHANG, Jianghai CAO, Guanghua WEN, Ping TANG. Time-Series Fluctuation Characteristics of Segregation Carbon Element Distribution Along Casting Direction in High Carbon Continuous Casting Billet[J]. 金属学报, 2018, 54(6): 851-858.
[12] Huidong WU, Goro MIYAMOTO, Zhigang YANG, Chi ZHANG, Hao CHEN, Tadashi FURUHARA. Incomplete Bainite Transformation Accompanied with Cementite Precipitation in Fe-1.5(3.0)%Si-0.4%C Alloys[J]. 金属学报, 2018, 54(3): 367-376.
[13] Mingxiao GUO, Chen PAN, Zhenyao WANG, Wei HAN. A Study on the Initial Corrosion Behavior of Carbon Steel Exposed to a Simulated Coastal-Industrial Atmosphere[J]. 金属学报, 2018, 54(1): 65-75.
[14] CHEN Wenjuan, HAO Long, DONG Junhua, KE Wei, WEN Huailiang. EFFECT OF pH VALUE ON THE CORROSION EVOLUTION OF Q235B STEEL IN SIMULATED COASTAL-INDUSTRIAL ATMOSPHERES[J]. 金属学报, 2015, 51(2): 191-200.
[15] XU Qiufa, PANG Xiaolu, LIU Quanlin, GAO Kewei. CREVICE CORROSION OF LOW ALLOY STEEL AND CARBON STEEL IN THE SIMULATED GROUNDWATER AT 90 ℃[J]. 金属学报, 2014, 50(6): 659-666.
No Suggested Reading articles found!