Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (4): 429-434    DOI: 10.3724/SP.J.1037.2009.00653
论文 Current Issue | Archive | Adv Search |
STUDY ON THE MULTI–SEGMENT FEATURE OF 625 ℃ CREEP–RUPTURE PROPERTY AND THE QUATITATIVE CHANGE OF PHASE PARAMETERS OF M23C6 AND LAVES PHASES IN EACH SEGMENT OF P92 STEEL
PENG Zhifang 1; CAI Lisheng 1; PENG Fangfang 2; HU Yongping 3; CHEN Fangyu 4
1. School of Power and Mechanical Engineering; Wuhan University; Wuhan 430072
2. Materials Research Department; Dong Fang Boiler Group Corp. Ltd.; Zigong 643001
3. Special Steels Plant; Inner Mongolia North Heavy Industries Group Corp. Ltd.; Baotou 014033
4. Research Institute of Wuhan Iron and Steel Company Ltd.; Wuhan 430080
Cite this article: 

PENG Zhifang CAI Lisheng PENG Fangfang HU Yongping CHEN Fangyu. STUDY ON THE MULTI–SEGMENT FEATURE OF 625 ℃ CREEP–RUPTURE PROPERTY AND THE QUATITATIVE CHANGE OF PHASE PARAMETERS OF M23C6 AND LAVES PHASES IN EACH SEGMENT OF P92 STEEL. Acta Metall Sin, 2010, 46(4): 429-434.

Download:  PDF(1623KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the present study, the multi–segment feature of stress vs rupture–time plot and the corresponding quatitative change of phase parameters of M23C6 and Laves in each segment were investigated for P92 steel samples subjected to 625 ℃ creep–rupture tests. The results indicate that the stress vs rupture–time plot obtained from the test results can be divided into two segments (higher stress level and shorter rupture time segment: 180—150 MPa/30—454 h, and lower stress level and longer rupture time segment: 140—110 MPa/2881—10122 h) respectively, and the microstructural evolution is closely related to the feature of each segment. In the higher stress level and shorter rupture time segment the M23C6  particles are coarsened, while in the lower stress level and longer rupture time segment both M23C6  and Laves phases are coarsened, but the latter is predominantly. The average composition, the amount and the elemental partitioning of each alloy phase called phase parameters can be determined by a multiphase separation method developed.

Key words:  P92 steel      multi-region analysis for creep-rupture property      M23C6 phase      Laves phase     
Received:  27 September 2009     
Fund: 

Supported by National Natural Science Foundation of China (No.50674072) and Scientific Research Project of Dong Fang Boiler Group Corp. Ltd., 2009

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00653     OR     https://www.ams.org.cn/EN/Y2010/V46/I4/429

[1] Yang F. In: Chinese Society for Electrical Engineering, ed., Smposium on Sinicization of New Type Steels for 600MW/1000MW Ultra–Supercritical Units, Yang Zhou: China Electric Power Journal Net, 2009: 1
(杨富. 见: 中国电机工程学会主编, 600MW/1000MW超超临界机组新型钢国产化研讨会报告文集, 扬州: 中国电力期刊网, 2009: 1)
[2] Armaki H G, Maruyama K, Yoshizawa M, Igarashi M. Mater Sci Eng, 2008; A490: 66
[3] Maruyama K, Yoshimi K. J Press Vess Technol, 2007; 129:449
[4] Maruyama K, Lee J S, In: Shibli I A, Holdworth S R eds., Creep & Fracture in High Temperature Components–Design & Life Assessment Issues, Lancaster: DEStech Publications, 2005: 372
[5] Lee J S, Armaki H G, Maruyama K, Muraki T, Asahi H. Mater Sci Eng, 2006; A428: 270
[6] Peng Z F, Yang Z G, Yan G Z, Chen S G, Zhou Y G. In: Academic Committee of the Superalloys, CSM ed., High–Temperature Structural Materials for Power and Eergy Resource—Proceedings of 11th Annual Chinese Conference on Sueralloys, Shanghai: Metallurgical Industry Press, 2007: 666
(彭志方, 杨志刚, 阎光宗, 陈盛广, 周元贵. 见: 中国金属学会高温材料分会主编, 动力与能源用高温结构材料---第11届中国高温合金年会论文集, 上海: 冶金工业出版社, 2007: 666)
[7] Peng F F, Peng Z F, Chen F Y. In: Chinese Society for Electrical Engineering ed. Symposium on Sinicization of New Type Steels for 600MW/10MW Ultra–Supercritical Units, Yang Zhou: China Electric Power Journal Net, 2009: 178
(彭芳芳, 彭志方, 陈方玉. 见: 中国电机工程学会主编, 600MW/1000MW超超临界机组新型钢国产化研讨会报告文集, 扬州: 中国电力期刊网, 2009: 178)
[8] Peng Z F, Peng F F, Chen F Y. Electric Power Construction, 2009; 30(12): 1
(彭志方, 彭芳芳, 陈方玉. 电力建设, 2009; 30(12): 1)
[9] Peng Z F, Dang Y Y, Peng F F. Acta Metall Sin, 2010;46: 435
(彭志方, 党莹樱, 彭芳芳. 金属学报, 2010, 46: 435)
[10] Robertson D G. ECCC Data Sheets 2005. http://www.ommi. co. uk/etd/eccc/ advanced creep/index.htm
[11] Kuai C G, Peng Z F. Acta Metall Sin, 2008; 44: 897
(蒯春光, 彭志方. 金属学报, 2008; 44: 897)
[12] Maruyama K, Sawada K, Koike J. ISIJ Int, 2001; 41: 641
[13] Abe F. Sci Technol Adv Mater, 2008; 9: 15

[1] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[2] CHEN Jianjun, DING Yutian, WANG Kun, YAN Kang, MA Yuanjun, WANG Xingmao, ZHOU Shengming. Effects of Laves Phase on Burst Behavior of GH3625 Superalloy Pipe During Hot Extrusion[J]. 金属学报, 2021, 57(5): 641-650.
[3] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[4] Gaowu QIN, Hongbo XIE, Hucheng PAN, Yuping REN. A New Class of Ordered Structure Between Crystals and Quasicrystals[J]. 金属学报, 2018, 54(11): 1490-1502.
[5] Zhenliang LI,Fei LIU,Aiping YUAN,Baoyu DUAN,Xiaowei LI,Yiming LI. EFFECTS OF ROLLING DEFORMATION ON TEXTURE AND LPSO PHASE OF SPRAY-DEPOSITED MAGNESIUM ALLOYS CONTAINING Nd[J]. 金属学报, 2016, 52(8): 938-944.
[6] Kejian LI,Zhipeng CAI,Yifei LI,Jiluan PAN. EVOLUTION BEHAVIOR OF LAVES PHASE IN FB2 MARTENSITIC STAINLESS STEEL DURING WELDING[J]. 金属学报, 2016, 52(6): 641-648.
[7] MA Ping, WU Erdong, LI Wuhui, SUN Kai, CHEN Dongfeng. MICROSTRUCTURES AND HYDROGEN STORAGE PROPERTIES OF Ti0.7Zr0.3(Cr1-xVx)2 ALLOYS[J]. 金属学报, 2014, 50(4): 454-462.
[8] WANG Xue, YU Shumin, REN Yaoyao, LIU Hong, LIU Hongwei, HU Lei. LAVES PHASE EVOLUTION IN P92 STEEL DURING AGEING[J]. 金属学报, 2014, 50(10): 1195-1202.
[9] WANG Xue, LI Yong, REN Yaoyao, LIU Hongwei, LIU Hong, WANG Wei. EFFECT OF LAVES PHASE PRECIPITATION ON REDISTRIBUTION OF ALLOYING ELEMENTS IN P92 STEEL[J]. 金属学报, 2014, 50(10): 1203-1209.
[10] ZHANG Maicang, CAO Guoxin, DONG Jianxin, ZHENG Lei, YAO Zhihao. INVESTIGATIONS ON DISSOLUTION MECHANISM OF LAVES PHASE IN GH4169 ALLOY INGOT BASED ON CLASSICAL DYNAMICAL MODEL[J]. 金属学报, 2013, 49(3): 372-378.
[11] SHENG Liyuan, ZHANG Wei, LAI Chen, GUO Jianting,XI Tingfei, YE Hengqiang. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LAVES PHASE STRENGTHENING NiAl BASE COMPOSITE FABRICATED BY RAPID SOLIDIFICATION[J]. 金属学报, 2013, 49(11): 1318-1324.
[12] PAN Zhiping, LI Shuangming, XU Lei, FU Hengzhi. THREE-DIMENSIONAL DENDRITIC PATTERN OF PRIMARY LAVES PHASE Cu2Mg IN DIRECTIONAL SOLIDIFICATION OF Cu-10.25 %Mg HYPEREUTECTIC ALLOY[J]. 金属学报, 2013, 49(1): 92-100.
[13] WANG Xue1, PAN Qiangang2, TAO Yongshun2, ZHANG Yinglin1,ZENG Huiqiang2,LIU Hong2. TYPE IV CREEP RUPTURE CHARACTERISTICS OF P92 STEEL WELDMENT[J]. 金属学报, 2012, 48(4): 427-434.
[14] PENG Zhifang CAI Lisheng PENG Fangfang DANG Yingying CHEN Fangyu.  EFFECT OF δ-FERRITE ON THE COMPOSITION AND VOLUME FRACTION OF PRECIPITATES IN P92 STEEL AGED AT 700 AND 750℃[J]. 金属学报, 2012, 48(11): 1315-1320.
[15] LI Xiaocheng DING Yutian HU Yong. MICROSTRUCTURE AND MAGNETOSTRICTION OF THE Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) ALLOYS[J]. 金属学报, 2012, 48(1): 11-15.
No Suggested Reading articles found!