Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (11): 1490-1502    DOI: 10.11900/0412.1961.2018.00357
Microstructures Current Issue | Archive | Adv Search |
A New Class of Ordered Structure Between Crystals and Quasicrystals
Gaowu QIN(), Hongbo XIE, Hucheng PAN, Yuping REN
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

Gaowu QIN, Hongbo XIE, Hucheng PAN, Yuping REN. A New Class of Ordered Structure Between Crystals and Quasicrystals. Acta Metall Sin, 2018, 54(11): 1490-1502.

Download:  HTML  PDF(10545KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper briefly reviews the development and research history of strutures of the solid matters, and highlight two new strcutures of precipitates in Mg alloys found by our group recently. (1) The isothermally aged (Mg, In)2Ca "Laves phase" contains two separate unit cells promoting the formation of five tiling patterns. The bonding of these patterns leads to the generation of the present phase but without any six-fold rotational symmetry in a long-range on the (0001)L basal plane, constrainted by the Penrose geometrical rule, completely different from the known Laves phases. (2) The MgZn five-fold nanodomain structure is self-assembled by two separate unit cells (72° rhombus structure: MgZn2, and 72° equilateral hexagon structure: MgZn) under the Penrose geomotrical constraints, containing 2D five-fold symmetry locally and short-range ordered C14 and C15 Laves structures. These two special structures without any translational symmetry on the normal plane while periodical arrangement along the normal direction, are a new class of intermediate structures between crystals and quasicrystals. And thus, they does not belong to any crystals or 2D ordered structures in quasicrystals or quasicrystal approximants.

Key words:  crystal      quasicrystal      approximants      Laves phase      domain structure      ordered structure     
Received:  30 July 2018     
ZTFLH:  TG111.5  
Fund: Supported by National Key Research and Development Program of China (No.2016YFB0701202) and National Natural Science Foundation of China (Nos.51371046, 51525101, 51501032 and U1610253)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00357     OR     https://www.ams.org.cn/EN/Y2018/V54/I11/1490

Fig.1  Schematic of the solid matters in nature, including the amorphous (red), crystals (blue), quasicrystals (yellow), approximants (baby blue) and ordered structures between the crystals and quasicrystals (green)
Fig.2  Comparison of the HRTEM images and the corresponding selected-area electron diffraction (SAED) patterns of amorphous alloy (a)[1] and crystal alloy (b)
Fig.3  Typical electron diffraction pattern of a Mg-Al-Zn three-dimensional icosahedral quasicrystal (a), high-resolution HAADF-STEM image of the Mg-Al-Zn icosahedral quasicrystal (b), modeled atomic arrangement of the Cd-Yb icosahedral quasicrystal (c)[31] and the 3D view of Cd-Yb icosahedral quasicrystal (d)[31] (The electron beam is parallel to the five-fold axis in Figs.3a~c)
Fig.4  Decagonal structure is a 2-dimensional quasicrystal, whose characteristic is well represented by a regular decagonal prism, as schematically shown with the relevant electron diffraction patterns of tenfold and twofold symmetries (a) and atomic-scale HAADF-STEM image of a 2D Al70Mn17Pd13 decagonal quasicrystal, the electron beam is parallel to ten-fold axis (b)[32]
Fig.5  The [010] HAADF-STEM image of the (3/2, 2/1) orthorhombic approximants, where the same color means the same orientation (a), and the corresponding schematic of the tiles (b)[34]. One shield-like tile (SLT) is highlighted in semitransparent yellow in the upper right area and one enlarged experimental SLT at atomic resolution is inserted in the lower right corner. One SLT consists of two shutter-like hexagons and one pentagon-like star, with the mirror symmetry (m) going through the center from head to tail (a and c represent the lattice parameters of the orthorhombic approximants)
Fig.6  SAED pattern taken from a V-Ni-Si microdomain structure showing a tenfold symmetry (a) and HRTEM image of the V-Ni-Si domain structure in which some unit cells of the Frank-Kasper phases, C and L (C14 Laves), are indicated. Each bright dot represents the projection of a chain of interlocked icosahedra (b)[23]
Fig.7  Modeled atomic arrangement of three kinds of Laves phases viewed along the [0001] (a, c) and [112] (b) directions
(b) MgNi2 Laves phase, C36, with a stacking sequence of “…ABAC…”
(c) MgCu2 Laves phase, C15, with a stacking sequence of “…ABCABC…”
Fig.8  HAADF-STEM images of the Mg-1.5In-0.5Ca alloy aged at 200 ℃ for 24 h (The electron beam is parallel to [0001]α)[24]
(a) low-magnification HAADF-STEM image (The inset shows fast Fourier transformation (FFT) image)
(b) atomic-scale HAADF-STEM image
Fig.9  Atomic-scale HAADF-STEM image of the (Mg, In)2Ca Laves phase (a), atomic schematic diagrams of corresponding modeled atomic arrangement (b), modeled unit cell-1 marked with red dash cicle in Fig.9a (c), and modeled unit cell-2 marked with blue dash cicle in Fig.9a (d)[24]
Fig.10  HAADF-STEM images of the Mg-6Zn alloy after isothermally aged at 200 ℃ for 8 h, viewed along the [0001]α (a~c)[25] and [1120]α (d) directions
(a) low-magnification HAADF-STEM image
(b, c) some precipitate-rods circled in Fig.10a are enlarged and shown, the atomic-scale HAADF-STEM images indicates the structure in the observed 2D containing two separate unit cells, whose lattice images are labeled as H and R, respectively. The inset in Fig.10b is the corresponding FFT image. The unique characteristics of the 2D five-fold nanodomain structure, five orientation rhombi variants bonding together to form a star pattern and five orientation equilateral hexagon variants bonding together to form a petal pattern, are marked by red star and yellow petal, respectively
(d) atomic-scale HAADF-STEM image viewed along [1120]α direction indicates the precipitate-rods with periodic arrangements along the normal vector
Fig.11  Atomic schematic diagrams of the precipitate-rod in the Mg-Zn alloy (L—plane distance between Mg atom and adjacent apex Zn atom, Z—the atomic layers)[25]
(a) modeled atomic arrangement of the precipitate-rod, viewed along [001]P direction (five-fold axis)
(b) the six kinds of icosahedral clusters models in the precipitate-rod
(c) modeled atomic structure of the 72° rhombus unit cell
(d) modeled atomic structure of the 72° equilateral hexagon unit cell
[1] Wang W H.The nature and properties of amorphous matter[J]. Prog. Phys., 2013, 33(5): 177(汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33(5): 177)
[2] Bindi L, Steinhardt P J, Yao N, et al.Natural quasicrystals[J]. Science, 2009, 324: 1306
[3] Shechtman D, Blech I, Gratias D, et al.Metallic phase with long-range orientational order and no translational symmetry[J]. Phys. Rev. Lett., 1984, 53: 1951
[4] Zhang Z, Ye H Q, Kuo K H.A new icosahedral phase with m35 symmetry[J]. Philos. Mag., 1985, 52A: L49
[5] Ohashi W, Spaepen F.Stable Ga-Mg-Zn quasi-periodic crystals with pentagonal dodecahedral solidification morphology[J]. Nature, 1987, 330: 555
[6] Abe E, Tsai A P.Quasicrystal-crystal transformation in Zn-Mg-rare-earth alloys[J]. Phys. Rev. Lett., 1999, 83: 753
[7] Guo J Q, Abe E, Tsai A P.Stable icosahedral quasicrystals in binary Cd-Ca and Cd-Yb systems[J]. Phys. Rev., 2000, 62B: R14605
[8] Tian Y, Huang H, Yuan G Y, et al.Nanoscale icosahedral quasicrystal phase precipitation mechanism during annealing for Mg-Zn-Gd-based alloys[J]. Mater. Lett., 2014, 130: 236
[9] Wang N, Chen H, Kuo K H.Two-dimensional quasicrystal with eightfold rotational symmetry[J]. Phys. Rev. Lett., 1987, 59: 1010
[10] Cao W, Ye H Q, Kuo K H.A new octagonal quasicrystal and related crystalline phases in rapidly solidified Mn4Si[J]. Phys. Status Solidi, 1988, 107A: 511
[11] Ma X L, Kuo K H.Decagonal quasicrystal and related crystalline phases in slowly solidified Al-Co alloys[J]. Metall. Trans., 1992, 23A: 1121
[12] Naumovi? D, Aebi P, Schlapbach L, et al.Formation of a stable decagonal quasicrystalline Al-Pd-Mn surface layer[J]. Phys. Rev. Lett., 2001, 87: 195506
[13] Abe E, Tsai A P.Structure of a metastable Al3Ni decagonal quasicrystal: Comparison with a highly perfect Al72Ni20Co8[J]. J. Alloys Compd., 2002, 342: 96
[14] Li H, Ma H K, Hou L G, et al.Shield-like tile and its application to the decagonal quasicrystal-related structures in Al-Cr-Fe-Si alloys[J]. J. Alloys Compd., 2017, 701: 494
[15] Ishimasa T, Nissen H U, Fukano Y.New ordered state between crystalline and amorphous in Ni-Cr particles[J]. Phys. Rev. Lett., 1985, 55: 511
[16] Conrad M, Krumeich F, Harbrecht B.A dodecagonal quasicrystalline chalcogenide[J]. Angew. Chem. Int. Ed., 1998, 37: 1383
[17] Ye X C, Chen J, Irrgang M E, et al.Quasicrystalline nanocrystal superlattice with partial matching rules[J]. Nat. Mater., 2017, 16: 214
[18] Kuo K H.Quasiperiodic Crystals [M]. Hangzhou: Zhejiang Science & Technology Press, 2004: 130(郭可信. 准晶研究 [M]. 杭州: 浙江科学技术出版社, 2004: 130)
[19] Kuo K H.Crystallographic features of quasicrystals[J]. Prog. Chem., 1994, 6: 266(郭可信. 准晶的晶体学特征 [J]. 化学进展, 1994, 6: 266)
[20] Abe E, Yamamoto A.Structure of an approximant crystal in Ni-rich Al71Ni22Co7[J]. Philos. Mag., 2011, 91: 2617
[21] Ye H Q, Wang D N, Kuo K H. Fivefold symmetry in real and reciprocal spaces[J]. Ultramicroscopy, 1985, 16: 273
[22] Ye H Q.Periodic and aperiodic arrangements of icosahedral columns in pentagonal Frank-Kasper phases and analogs [J]. Mater. Sci. Forum, 1987, 22-24: 103
[23] Zhou D S, Ye H Q, Li D X, et al.Microdomain structure displaying apparent decagonal symmetry[J]. Phys. Rev. Lett., 1988, 60: 2180
[24] Xie H B, Pan H C, Ren Y P, et al.New structured laves phase in the Mg-In-Ca system with nontranslational symmetry and two unit cells[J]. Phys. Rev. Lett., 2018, 120: 085701
[25] Xie H B, Pan H C, Ren Y P, et al.Self-assembly of two unit cells into a nanodomain structure containing five-fold symmetry[J]. J. Phys. Chem. Lett., 2018, 9: 4373
[26] Vainshtein B.K. Fundamentals of Crystals: Symmetry, and Methods of Structural Crystallography[M]. 1994: 1
[27] Cui Y H.Development of crystal symmetry theory in last three hundred years[J]. Explor. Nat., 1984,(4): 92(崔云昊. 晶体对称理论三百年 [J]. 大自然探索, 1984, (4): 92)
[28] Chen J Z.Discovery and development of crystallography and quasicrystallography[J]. J. China Univ. Geosci., 1993, 18(S1): 1(陈敬中. 晶体学、准晶体学的发生和发展 [J]. 中国地质大学学报, 1993, 18(S1): 1)
[29] Kroto H W, Heath J R, Obrien S C, et al.C60: Buckminsterfullerene[J]. Nature, 1985, 318: 162
[30] Bednorz J G, Mullerk A.Possible high Tc superconductivity in the Ba-La-Cu-O system[J]. Z. Phys.-Condensed Matter, 1986, 64B: 189
[31] Takakura H, Gomez C P, Yamamoto A, et al.Atomic structure of the binary icosahedral Yb-Cd quasicrystal[J]. Nat. Mater., 2007, 6: 58
[32] Abe E.Electron microscopy of quasicrystals-where are the atoms?[J]. Chem. Soc. Rev., 2012, 41: 6787
[33] Flicker F.One-dimensional quasicrystals from incommensurate charge order[J]. Phys. Rev. Lett., 2015, 115: 236401
[34] He Z B, Wei D X, Shen X, et al.Approximants of Al-Cr-Fe-Si decagonal quasicrystals described by single structural block[J]. J. Alloys Compd., 2015, 647: 797
[35] Sinha A K.Topologically close-packed structures of transition metal alloys[J]. Prog. Mater. Sci., 1972, 15: 81
[36] Liu C T, Zhu J H, Brady M P, et al.Physical metallurgy and mechanical properties of transition-metal Laves phase alloys[J]. Intermetallics, 2000, 8: 1119
[37] Kirkland E J, Loane R F, Silcox J.Simulation of annular dark field stem images using a modified multislice method[J]. Ultramicroscopy, 1987, 23: 77
[38] Muller D A.Structure and bonding at the atomic scale by scanning transmission electron microscopy[J]. Nat. Mater., 2009, 8: 263
[39] Nie J F.Precipitation and hardening in magnesium alloys[J]. Metall. Mater. Trans., 2012, 43A: 3891
[40] Sturkey L, Clark J B.Mechanism of age-hardening in magnesium zinc alloys[J]. J. Inst. Met., 1959, 88: 177
[41] Gallot J, Guinier A, Lal K, et al.Etude aus rayons X des phenomenes de precipitation dans un alliage magnesium-zinc a 6% de zinc[J]. C.R. Hebd. Seances Acad. Sci., 1964, 258: 2818
[42] Gallot J, Graf R.Nouvelles observations aux rayon X et au microscope electronique sur la phase transitoire apparaissant dans l'alliage magnesium-zinc a 6% de zinc[J]. C.R. Hebd. Seances Acad. Sci., 1965, 261: 728
[43] Chun J S, Bryne J G.Precipitate strengthening mechanisms in magnesium zinc alloy single crystals[J]. J. Mater. Sci., 1969, 4: 861
[44] Wei L Y, Dunlop G L, Westengen H.Precipitation hardening of Mg-Zn and Mg-Zn-RE alloys[J]. Metall. Mater. Trans., 1995, 26A: 1705
[45] Rokhlin L L. Oreshkina A A.Research into the structure of a metastable phase formed during the breakdown of a supersaturated solution in magnesium-zinc alloys[J]. Fiz. Met. Metalloved., 1988, 66: 559
[46] Gao X, Nie J F.Characterization of strengthening precipitate phases in a Mg-Zn alloy[J]. Scr. Mater., 2007, 56: 645
[47] Rosalie J M, Somekawa H, Singh A, et al.Structural relationships among MgZn2 and Mg4Zn7 phases and transition structures in Mg-Zn-Y alloys[J]. Philos. Mag., 2010, 90: 3355
[48] Langelier B, Korinek A, Donnadieu P, et al.Improving precipitation hardening behavior of Mg-Zn based alloys with Ce-Ca microalloying additions[J]. Mater. Charact., 2016, 120: 18
[1] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[7] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[8] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[9] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[10] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[11] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[12] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[13] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[14] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[15] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
No Suggested Reading articles found!