Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (1): 11-15    DOI: 10.3724/SP.J.1037.2011.00269
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MAGNETOSTRICTION OF THE Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) ALLOYS
LI Xiaocheng1),  DING Yutian1, 2), HU Yong1, 2)
1) State Key Laboratory of Gansu Advanced Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050
2) Wenzhou Pump $\&$ Valve Engineering Research Institute, Lanzhou University of Technology, Wenzhou 325105
Cite this article: 

LI Xiaocheng DING Yutian HU Yong. MICROSTRUCTURE AND MAGNETOSTRICTION OF THE Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) ALLOYS. Acta Metall Sin, 2012, 48(1): 11-15.

Download:  PDF(1818KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The Tb0.3Dy0.7Fe1.95-xTix ($x$=0, 0.03, 0.06, 0.09) alloys were prepared by high--vacuum non-consumable arc melting furnace. The crystal structure, microstructure, magnetostriction and their relationships of the Tb0.3Dy0.7Fe1.95-xTix ($x$=0, 0.03, 0.06, 0.09) alloys were systematically studied. The results demonstrated that the matrix phase of the Tb0.3Dy0.7Fe1.95-xTix (x=0.03, 0.06, 0.09) alloys consisted predominantly of the Laves phase with MgCu2 structure. After Ti addition, the lattice parameter of the Laves phase in the alloys was decreased by substituting rare earth elements Tb and Dy, and the formation of the TiFe2 phase as the primary phase made the solidifying liquid become rich in rare earths and suppressed the formation of the deleterious RFe3 (R=Tb and Dy) phase. Ti was found to be soluble in the matrix RFe2 and R-rich phases and formed the matrix (R, Ti)Fe2 and (R, Ti)-rich phases. The concentration of Ti affected the magnetostriction significantly. The improvement in magnetostriction was maximum for the Ti-added alloys with a low concentration of the Ti (x=0.03) as compared to the parent alloy Tb0.3Dy0.7Fe1.95. However, the decrease in magnetostriction at a higher concentration (x=0.09) was due to the formation of paramagnetic phases TiFe2 and (R, Ti)-rich. Whereas the magnetostriction had little improvement as compared to the parent alloy\linebreak Tb0.3Dy0.7Fe1.95.
Key words:  Tb-Dy-Fe alloy      magnetostriction      Ti addition      microstructure      Laves phase     
Received:  25 April 2011     
ZTFLH: 

TG113

 
Fund: 

Supported by National Natural Science Foundation of China (No.11004091), Natural Science Foundation of Zhejiang Province (No.Y4090219) and Natural  Science Foundation of Gansu Province (No.0916RJZA025)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00269     OR     https://www.ams.org.cn/EN/Y2012/V48/I1/11

[1] Clark A E. Ferromagnetic Materials. Vol.1 Amsterdam: North–Holland, 1980: 531

[2] Clark A E, Abbundi R, Gilmor W R. IEEE Trans Magn, 1978; 14: 542

[3] Clark A E, Teter J P, McMasters O D. J Appl Phys, 1988; 63: 3910

[4] Branwood A, Janio A L, Pierey A R. J Appl Phys, 1987; 61: 3796

[5] Teter J P, Clark A E, McMasters O D. J Appl Phys, 1987; 61: 3787

[6] Jiles D C. Acta Mater, 2003; 51: 5907

[7] Greenough R D, Shulze M P, Jenner A G I, Wilkinson A J. IEEE Trans Magn, 1991; 27: 5346

[8] Jiles D C. J Appl Phys, 1994; 27: 1

[9] Zhang T L, Jiang C B, Zhang H, Xu H B. Smart Mater Struct, 2004; 13: 473

[10] Zhang M C, Gao X X, Zhou S Z, Shi Z H. J Alloys Compd, 2004; 381: 226

[11] Clark A E, Wun–Fogle M, Restorff J B, Lograsso T A, Cullen J R. IEEE Trans Magn, 2001; 37: 2678

[12] Ma T Y, Jiang C B, Xiao F, Xu H B. J Alloys Compd, 2006; 414: 276

[13] Liu H Y, Li Y X, Meng F B. J Alloys Compd, 2006; 408: 133

[14] Palit M, Pandian S, Balamuralikrishnan R, Singh A K, Das N, Chandrasekaran V, Markandeyulu G. J Appl Phys, 2006; 100: 074913

[15] Clark A E, Teter J P, Wun–Fogle M. J Appl Phys, 1991; 69: 5771

[16] Teter J P, Clark A E, Wun–Fogle M. IEEE Trans Magn, 1990; 26: 1748

[17] Zhou S Z, Gao X X, Zhang M C, Zhao Q, Shi Z H. J Mater Sci Technol, 2000; 16: 175

[18] Zhao Y, Jiang C B, Zhang H, Xu H B. J Alloys Compd, 2003; 354: 263

[19] Li K S, Xu J, Yang H C, Yuan Y Q, Yu D B, Ying Q M, Zhang S G. J Alloys Compd, 2004; 43: 8032

[20] Wang B W, Wu C H, Chuang Y C, Jin X M, Li J Y. J Alloys Compd, 1996; 237: 58

[21] Shi Y G, Tang S L, Yu J Y, Zhai L, Zhang X K, Du YW, Yang C P. J Appl Phys, 2009; 105: 07A925

[22] Pandian S, Chandrasekaran V, Markandeyulu G, Iyer K J L, Rama Rao K V S. J Appl Phys, 2002; 92: 6082

[23] Wang BW, Wu C H, Deng W, Tang S L, Jin X M, Chuang Y C, Li J Y. J Appl Phys, 1996; 79: 2587

[24] Guo H Q, Yang H Y, Shen B G, Yang L Y, Li R Q. J Alloys Compd, 1990; 190: 255

[25] Cui Y, Jiang C B, Xu H B. Acta Metall Sin, 2011; 47: 214

(崔 跃, 蒋成保, 徐惠彬. 金属学报, 2011; 47: 214)

[26] Westwood P, Abell J S. J Appl Phys, 1990; 67: 998

[27] Chelvane J A, Palit M, Basumatary H, Pandian S, Chandrasekaran V. Scr Mater, 2009; 61: 548

[28] Mei W, Okane T, Umeda T. J Alloys Compd, 1997; 248: 132
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!