Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (4): 435-443    DOI: 10.3724/SP.J.1037.2009.00652
论文 Current Issue | Archive | Adv Search |
STUDY ON CREEP–RUPTURE PROPERTY ASSESSMENT METHOD FOR 9%—12%Cr FERRITIC HEAT–RESISTANT STEELS
PENG Zhifang1; DANG Yingying1; PENG Fangfang2
1.School of Power and Mechanical Engineering; Wuhan University; Wuhan 430072
2.Materials Research Department; Dong Fang Boiler Group Co. Ltd.; Zigong 643001
Cite this article: 

PENG Zhifang DANG Yingying PENG Fangfang. STUDY ON CREEP–RUPTURE PROPERTY ASSESSMENT METHOD FOR 9%—12%Cr FERRITIC HEAT–RESISTANT STEELS. Acta Metall Sin, 2010, 46(4): 435-443.

Download:  PDF(626KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Long–term creep–rupture properties are usually evaluated from short–term data by time–temperature parameter (TTP) method, such as arson–miller parameter (LMP) and Orr–Sherby–Dorn (OSD) methods. However, the conventional TTP methods sometimes overestimate long–term creep rupture properties if the prediction is based on their short–term test data for 9%—12%Cr ferritic steels. The following concepts/methods are thus proposed in this paper in order to reduce the property overestimation tendency caused by the conventional TTP methods and to obtain a better agreement of the predicted property values with the observed ones. They include the C–value optimization and the multi–C region analysis, the long–term (5×103—1×105 h) creep rupture property prediction using short term test data (≤5×103 h), the optimization of function used for property prediction, and the effect of d[g(σ)]/d(P) vs P on the stability of steel properties based on the improved LMP method. All the data sets for the 9%—12%Cr steels are from NIMS database for the related calculations and analyses. The results show that the C value in LMP is not only different from steel to steel type but also varies with the multi–region stress levels, and the new approach to rupture life prediction proposes procedures for extrapolations of the short–term results, with rupture time measurements from tests lasting up to only 5×103 h providing reasonable estimates of 105 h rupture strengths, as well as the variation tendency of d[f(σ)]/d(P) vs P can reflect directly the long–term property stability of the steels investigated. Therefore, the concepts/methods proposed could improve effectively the accordance of predicted property values with observed ones and overcome obviously the overestimation tendency of 105 h strengths, which are more suitable and easily realized to assess the long–term creep–rupture properties of the advanced high Cr ferritic steels.

Key words:  9%-12%Cr ferritic heat-resistant steels      creep-rupture property      assessment method     
Received:  27 September 2009     
Fund: 

Supported by Scientific Research Project of Dong Fang Boiler Corp. Ltd., 2009

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00652     OR     https://www.ams.org.cn/EN/Y2010/V46/I4/435

[1]Larson F R, Miller J. Trans ASME, 1952; 74: 765
[2]Orr R L, Sherby O DDorn H E. Trans ASM, 1954; 46: 113
[3]Kushima H, Kimura K, Abe F. Tetsu–to–Hagane, 1999; 85: 841
[4](九岛秀昭, 木村一弘, 阿部富士雄. 铁と钢, 1999; 85: 841)
[5]Lee J S, Armaki H G, Maruyama K, Muraki T, Asahi H. Mater Sci Eng, 2006; A428: 270
[6]Maruyama K, Yoshimi K. J Press Vessel Technol 2007, 129,449
[7]Armaki H G, Maruyama K, Yoshizawa K, Igarashi M. Mater Sci Eng, 2008; A490: 66
[8]Xiu Z L. The Performance & Strength Design and Engineering Application of High–temperature Metallic Materials. Beijing: Chemical Industry Press, 2006: 210
[9](徐自立. 高温金属材料的性能、强度设计及工程应用. 北京: 化学工业出版社, 2006: 210)
[10]Peng Z F, Cai L S, Peng F F, Hu Y P, Chen F Y. Acta Metall Sin, 2010; 46: 429
[11](彭志方, 蔡黎胜, 彭芳芳, 胡永平, 陈方玉. 金属学报,2010;46: 429)
[12]Zuo M, Chiovelli S, Nonaka Y. Trans ASME, 2000; 122:482
[13] Kimura K. NIMS Creep Data Sheet No. 51, 2006. http://tsuge.nims.go.jp/ top/creep.html
[14] Irie H. NIMS Creep Data Sheet No. 43, 1996. http://tsuge.nims.go.jp/ top/creep.html
[15] Motsulia S. NIMS Creep Data Sheet No. 48, 2002. http://tsuge.nims.go.jp/top/creep.html
[16]Maruyama K, Lee J S. In: Shibli I A, Holdsworth S R, eds., Creep and Fracture in High Temperature Components–Design and Life Assessment Issues, Lancaster, PA: DEStech Publications, 2005: 372
[17]Yoshizawa M, Igarashi M, Moriguchi M, Iseda A, Armaki H G, Maruyama K. Mater Sci Eng, 2009; A510–511: 162
[18]Wilshire B, Scharning P J, Hurst R. Mater Sci Eng, 2009; A510–511: 3
[19]Wilshire B, Scharning P J. Scr Mater 2007, 56,701
[20]Robertson D G. ECCC Data Sheets, 2005. http: //www.ommi.co.uk/etd/ecc/ advanced creep/index.html
[21]Yuan L. Therm Power Generation, 2009; 38(7): 10
[22](袁力. 热力发电, 2009; 38(7): 10)

No Suggested Reading articles found!