Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (4): 454-462    DOI: 10.3724/SP.J.1037.2013.00637
Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND HYDROGEN STORAGE PROPERTIES OF Ti0.7Zr0.3(Cr1-xVx)2 ALLOYS
MA Ping1, WU Erdong1(), LI Wuhui2, SUN Kai3, CHEN Dongfeng3
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003
3 China Institute of Atomic Energy, Beijing 102413
Cite this article: 

MA Ping, WU Erdong, LI Wuhui, SUN Kai, CHEN Dongfeng. MICROSTRUCTURES AND HYDROGEN STORAGE PROPERTIES OF Ti0.7Zr0.3(Cr1-xVx)2 ALLOYS. Acta Metall Sin, 2014, 50(4): 454-462.

Download:  HTML  PDF(4291KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The crystal structures and phase compositions of Ti0.7Zr0.3(Cr1-xVx)2 (x=0.1, 0.2, 0.3, 0.4) alloys are analyzed by the XRD and SEM. The hydrogen storage properties, activation performance, thermodynamics and high-temperature desorption process of the alloys are investigated by pressure-composition-temperature (P-C-T) and DTA-TG measurements. The results show that the Ti0.7Zr0.3(Cr1-xVx)2 alloys contain multi-phases, i.e. C36 (P63/mmc) and C15 (Fd3m) Laves phases and V-based bcc solid solution phases with different lattice constants. When the content of V in the alloy is low, the alloy basically consists of C36 type of Laves phase and small amount of bcc solid solution phase. As the content of V increases, the C36 type transfers into C15 type of Laves phase, where the probability of forming third type of stacking layers (C layers) increases, and the content of the bcc solid solution also increases. The alloys in bulk can be easily activated at 2 MPa and room temperature. The x=0.1, 0.2 alloys present excellent activation performance even after exposure in air for 20 d. As V content increases, the hydrogen absorption capacity of the alloy increases whereas the plateau pressure decreases. The relative partial molar enthalpy (ΔH) and entropy (ΔS) of hydrogen absorption for the alloys are found to be in the ranges of -7~-28 kJ/mol and -35~ -95 J/(mol·K). The DTA-TG analysis indicates that the hydrogen release from the hydrides of the alloys occur in two dissolving temperatures within the range of 500~600 K, and some residual hydrides have completely decomposed at heating temperature up to 800 K.

Key words:  hydrogen storage      Laves phase      solid solution phase      pressure-concentration-temperature (P-C-T) curve      thermodynamics      DTA-TG analysis     
Received:  10 October 2013     
ZTFLH:  TG139.7  
Fund: Supproted by Natioal Natural Science Foundation of China (No.11079043) and National Basic Research Program of China (No.2010CB833101)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00637     OR     https://www.ams.org.cn/EN/Y2014/V50/I4/454

Fig.1  

Ti0.7Zr0.3(Cr1-xVx)2合金充氢前后的XRD谱

Fig.2  

x=0.1和0.4合金的粉末精修XRD谱

Fig.3  

Ti0.7Zr0.3(Cr1-xVx)2合金在4 MPa 氢压下充氢后Laves相和bcc相的体积变化与V含量关系

Fig.4  

Ti0.7Zr0.3(Cr1-xVx)2合金的SEM微观形貌

Fig.5  

具有新鲜表面的和空气中暴露20 d的Ti0.7Zr0.3(Cr1-xVx)2合金初始活化曲线

Fig.6  

Ti0.7Zr0.3(Cr1-xVx)2合金293 K时的P-C-T曲线

Fig.7  

Ti0.7Zr0.3(Cr1-xVx)2合金不同温度吸氢P-C-T曲线

Fig.8  

Ti0.7Zr0.3(Cr1-xVx)2 合金相对偏摩尔焓变|ΔH|和偏摩尔熵变|ΔS|随氢浓度变化关系

Fig.9  

Ti0.7Zr0.3(Cr1-xVx)2合金的DSC-TG曲线

[1] Profio P D, Arca S, Rossi F, Filopponi M. Int J Hydrogen Energy, 2009; 34: 9173
[2] Kim J H, Lee H, Hwang K T, Han J S. Int J Hydrogen Energy, 2009; 34: 9424
[3] Park J M, Lee J Y. J Less-Common Met, 1990; 160: 259
[4] Li G, Nishimiya N, Satoh H, Kamegashira N. J Alloys Compd, 2005; 393: 231
[5] Park J G, Jang H Y, Han S C, Lee P S, Lee J Y. J Alloys Compd, 2001; 325: 293
[6] Bououdina M, Enoki H, Akiba E. J Alloys Compd, 1998; 281: 290
[7] Sakintuna B, Lamari-Darkrim F, Hirscher M. Int J Hydrogen Energy, 2007; 32: 1121
[8] Guo X M, Wu E D. J Alloys Compd, 2008; 455: 191
[9] Guo X M. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008
(郭秀梅.中国科学院金属研究所博士学位论文, 沈阳, 2008)
[10] Liu X P, Cuevas F, Jiang L J, Latroche M, Li Z N, Wang S M. J Alloys Compd, 2009; 476: 403
[11] Tamura T, Tominaga Y, Matsumoto K, Fuda T, Kuriiwa T, Kamegawa A, Takamura H, Okada M. J Alloys Compd, 2002; 330-332: 522
[12] Pei P, Song X P, Zhao M, Zhang P L, Chen G L. Rare Met Mater Eng, 2008; 37: 1419
[13] Gao M X, Miao H, Zhao Y, Liu Y F, Pan H G. J Alloys Compd, 2009; 484: 249
[14] Akiba E, Iba H. Intermetallics, 1998; 6: 461
[15] Miao H, Gao M X, Liu Y F, Lin Y, Wang J H, Pan H G. Int J Hydrogen Energy, 2007; 32: 3947
[16] Stein F, Palm M, Sauthoff G. Intermetallics, 2004; 12: 713
[17] Fujitani S, Yonezu I, Saito T, Furukawa N. J Less-Common Met, 1991; 172-174: 220
[18] Mendelsohn M H, Gruen D M, Dwight A E. J Less-Common Met, 1979; 63: 193
[19] Kabutomori T, Takeda H, Wakisaka Y, Ohnishi K. J Alloys Compd, 1995; 231: 528
[20] Hang Z M, Xiao X Z, Tan D Z, He Z G, Li W P, Li S Q, Chen C P, Chen L X. Int J Hydrogen Energy, 2010; 35: 3080
[21] Manchester F D, Khatamian D. Mater Sci Forum, 1988; 31: 261
[22] Hong C M, Han D G, Lin Q Z. J Less-Common Met, 1991; 172-174: 1044
[23] Kay B D, Peden C H, Goodman D W. Phys Rev, 1986; 34B: 817
[24] Rudman P S. J Appl Phys, 1979; 50: 7195
[25] Muthukumar P, Satheesh A, Linder M, Merta R, Groll M. Int J Hydrogen Energy, 2009; 34: 7253
[26] Wu E D, Li W H, Li J. Int J Hydrogen Energy, 2012; 37: 1509
[27] Mouri T, Iba H. Mater Sci Eng, 2002; A329-331: 346
[28] Okada M, Kuriiwa T, Tamura T, Takamura H, Kamegawa A. J Alloys Compd, 2002; 330-332: 511
[29] Krishna Kumar M, Ramaprabhu S. Int J Hydrogen Energy, 2007; 32: 1890
[30] Muthukumar P, Linder M, Mertz R, Laurien E. Int J Hydrogen Energy, 2009; 34: 1873
[31] Li G, Nishimiya N, Satoh H, Kamegashira N. J Alloys Compd, 2005; 393: 231
[32] Kesavan T R, Ramaprabhu S, Rama Rao K V S, Das T P. J Alloys Compd, 1996; 244: 164
[1] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[4] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[5] CHEN Jianjun, DING Yutian, WANG Kun, YAN Kang, MA Yuanjun, WANG Xingmao, ZHOU Shengming. Effects of Laves Phase on Burst Behavior of GH3625 Superalloy Pipe During Hot Extrusion[J]. 金属学报, 2021, 57(5): 641-650.
[6] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[7] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[8] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[9] WANG Zumin,ZHANG An,CHEN Yuanyuan,HUANG Yuan,WANG Jiangyong. Research Progress on Fundamentals and Applications of Metal-Induced Crystallization[J]. 金属学报, 2020, 56(1): 66-82.
[10] Chengming ZHENG, Qingchao TIAN. Effect of Alloy Elements on Oxidation Behavior of Piercing Plug Steel[J]. 金属学报, 2019, 55(4): 427-435.
[11] Gaowu QIN, Hongbo XIE, Hucheng PAN, Yuping REN. A New Class of Ordered Structure Between Crystals and Quasicrystals[J]. 金属学报, 2018, 54(11): 1490-1502.
[12] Zhenliang LI,Fei LIU,Aiping YUAN,Baoyu DUAN,Xiaowei LI,Yiming LI. EFFECTS OF ROLLING DEFORMATION ON TEXTURE AND LPSO PHASE OF SPRAY-DEPOSITED MAGNESIUM ALLOYS CONTAINING Nd[J]. 金属学报, 2016, 52(8): 938-944.
[13] Kejian LI,Zhipeng CAI,Yifei LI,Jiluan PAN. EVOLUTION BEHAVIOR OF LAVES PHASE IN FB2 MARTENSITIC STAINLESS STEEL DURING WELDING[J]. 金属学报, 2016, 52(6): 641-648.
[14] Liheng LIU,Chunshan CHE,Gang KONG,Jintang LU,Shuanghong ZHANG. DESTABILIZATION MECHANISM OF Fe-Al INHIBITION LAYER IN Zn-0.2%Al HOT-DIP GALVANIZING COATING AND RELATED THERMODYNAMIC EVALUATION[J]. 金属学报, 2016, 52(5): 614-624.
[15] Feng LIU, Kang WANG. DISCUSSIONS ON THE CORRELATION BETWEEN THERMODYNAMICS AND KINETICS DURING THE PHASE TRANSFORMATIONS IN THE TMCP OF LOW-ALLOY STEELS[J]. 金属学报, 2016, 52(10): 1326-1332.
No Suggested Reading articles found!