Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (10): 1203-1209    DOI: 10.11900/0412.1961.2014.00167
Current Issue | Archive | Adv Search |
EFFECT OF LAVES PHASE PRECIPITATION ON REDISTRIBUTION OF ALLOYING ELEMENTS IN P92 STEEL
WANG Xue1,2(), LI Yong1, REN Yaoyao1, LIU Hongwei3, LIU Hong3, WANG Wei4
1 School of Power and Mechanics, Wuhan University, Wuhan 430072
2 Key Laboratory of Accoutrement Technique in Fluid Machinery & Power Engineering, Hubei Province, Wuhan University, Wuhan 430072
3 DongFang Boiler Group Co. Ltd., Zigong 643001
4 Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou 510080
Cite this article: 

WANG Xue, LI Yong, REN Yaoyao, LIU Hongwei, LIU Hong, WANG Wei. EFFECT OF LAVES PHASE PRECIPITATION ON REDISTRIBUTION OF ALLOYING ELEMENTS IN P92 STEEL. Acta Metall Sin, 2014, 50(10): 1203-1209.

Download:  HTML  PDF(1539KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The P92 steel specimens were aged at 650 ℃ for 0~5000 h, and precipitates of the aged specimens were extracted from the matrix using carbon extraction replicas and potentiostatic electrolysis. The amount of alloy elements in extracted precipitates was determinded by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and EDS, then the redistribution of alloying elements owing to Laves phase formation was analyzed. The hardness of aged specimens was taken using a Brinell hardness tester. The damage evolution equation owing to solute depletion was obtained from the redistribution characteristic of alloying elements and its influence on the creep life of P92 steel was evaluated based on the physical CDM model. The results are as follows. Before aging, about 86% contents of W and Mo in P92 steel are supersaturated in matrix and the remains are in M23C6 carbides. The removing of alloy elements take place due to the precipitation of Laves phase during aging. The formation of Laves phase consumes mainly W and Mo in matrix, and has little effect on the compositions of M23C6 cabides and MX carbonitrides precipitated before aging. The partition coefficients of these two elements supersaturated in matrix reduce up to 50% on the completion of Laves phase precipitation, and the Cr content in the matrix decreases about 3.6% because the formation of the Laves phase consumes Cr. The precipitation of Laves-phase contributes to the significant decreasing of solution hardening, causes the creep life of P92 steel reduction of about 24% at 650 ℃, 100 MPa.

Key words:  P92 steel      Laves phase      alloying element      redistribution     
Received:  08 April 2014     
ZTFLH:  TG142.7  
Fund: Supported by National Natural Science Foundation of China (Nos.51074113 and 51374153) and Sichuan Province Fundamental Research Project (No.2013JY0123)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00167     OR     https://www.ams.org.cn/EN/Y2014/V50/I10/1203

Fig.1  TEM images of precipitates in the replica of P92 steel as received (a) and aged at 650 ℃ for 500 h (b), 2000 h (c) and 5000 h (d) (Inset in Fig.1c shows the SAED pattern of Laves phase)
Aging time / h Cr Fe Mo W
500 14.50±1.72 47.97±1.45 8.54±0.79 28.95±1.04
2000 17.07±3.42 47.25±1.75 8.15±0.90 27.53±1.48
5000 13.46±2.15 49.36±1.59 8.12±0.56 29.06±1.28
Table 1  EDS analysis results of Laves phase in P92 steel aged at 650 ℃ for different times
Aging time / h Cr Fe Mo W Mn V
500 67.61±1.12 22.72±0.90 2.0±0.24 5.29±0.33 1.35±0.28 1.03±0.62
2000 68.09±1.80 22.41±1.37 1.91±0.16 5.40±0.36 1.41±0.24 0.78±0.27
5000 69.86±1.25 19.71±0.76 1.97±0.22 5.64±0.46 1.35±0.26 1.47±0.96
Table 2  EDS analysis results of metallic element of M23C6 carbides in P92 steel aged at 650 ℃ for different times
Aging time V-rich MX Nb-rich MX
h V Nb V Nb
500 89.52±4.95 10.48±2.71 30.11 69.89
2000 88.45±4.99 11.55±2.74 24.71 75.29
5000 88.30±8.05 11.70±4.41 28.28 71.72
Table 3  EDS analysis results of metallic element of MX carbonitrides in P92 steel aged at 650 ℃ for different times
Fig.2  Amount of extracted residues and alloy elements as a function of aging time for P92 steel at 650 ℃
Fig.3  Partition coefficient curves of Mo and W supersaturated in matrix of P92 steel aged at 650 ℃ for different times
Fig.4  Hardness curve of the steel P92 aged at 650 ℃ for different times
Fig.5  Comparison of creep curves of P92 steel with or without solute depletion damage (Applied stress is 100 MPa and temperature is 650 ℃)
[1] Shen Q, Liu H G. Electric Power Construction. 2010; 31(10): 71
(沈 琦, 刘鸿国.电力建设, 2010; 31(10): 71)
[2] Yang F. In: Chinese Society for Electrical Engineering ed., Symposium on Sinicization of New Type Steels for 600 MW/1000 MW Ultra-Supercritical Units, Yangzhou: China Electric Power Technology Net, 2009: 1
(杨 富. 见: 中国电机工程学会主编, 600 MW/1000 MW超超临界机组新型钢国产化研讨会报告文集, 扬州: 中国电力科技网, 2009: 1)
[3] Liu Z D,Cheng S C,Wang Q J,Yang G,Bao H S,Gan Y. Development of Boiler Steels Using for 600 ℃ Fossil Power Units in China. Beijing: Metallurgical Industry Press, 2011: 161
(刘正东,程世长,王起江,杨 钢,包汉生,干 勇.中国600 ℃火电机组锅炉钢研究进展. 北京: 冶金工业出版社, 2011: 161)
[4] Masuyama F. ISIJ Int, 2001; 41: 612
[5] Tsuchida Y, Okamoto K, Tokunaga Y. ISIJ Int, 1995; 35: 317
[6] Yamamoto K, Kimura Y, Wei F G, Mishima Y. Mater Sci Eng, 2002; A329-331: 249
[7] Miyhara K, Hwang J H, Shimoide Y. Scr Metall Mater, 1995; 32: 1917
[8] Sklenička V, Kuchařová K, Svoboda M, Kloc L, Buršík J, Kroupa A. Mater Charact, 2003; 51: 35
[9] Ennis P J, Zielinska-Lipiec A, Wachter O, Czyrska-Filemonowicz A. Acta Mater, 1997; 45: 4901
[10] Peng Z F, Cai L S, Peng F F, Hu Y P, Chen F Y. Acta Metall Sin, 2010; 46: 429
(彭志方, 蔡黎胜, 彭芳芳, 胡永平, 陈方玉. 金属学报, 2010; 46: 429)
[11] Lee J S, Armaki H G, Maruyama K, Muraki T, Asahi H. Mater Sci Eng, 2006; A428: 270
[12] Dyson B. J Pressure Ves Technol, 2000; 122: 281
[13] Yin Y F, Faulkner R G. Mater Sci Technol, 2005; 21: 1239
[14] Yin Y F, Faulkner R G. Mater Sci Technol, 2006; 22: 929
[15] Chen Y X, Yan W, Hu P, Shan Y Y, Yang K. Acta Metall Sin, 2011; 47: 1372
(陈云翔, 严 伟, 胡 平, 单以银, 杨 柯. 金属学报, 2011; 47: 1372)
[16] Fujita N, Ohmura K, Yamamoto A. Mater Sci Eng, 2003; A351: 272
[17] Danielsen H K, Hald J. Calphad, 2007; 31: 505
[18] Wang X, Yu S M, Ren Y Y, Liu H, Liu H W, Hu L. Acta Metall Sin, 2014; 50: 1195
(王 学, 于淑敏, 任遥遥, 刘 洪, 刘洪伟, 胡 磊. 金属学报, 2014; 50: 1195)
[19] Hald J, Korcakova L. ISIJ Int, 2003; 43: 420
[20] Sawada K, Kubo K, Abe F. Mater Sci Eng, 2001; A319-321: 784
[21] Abe F. Metall Mater Trans, 2005; 36A: 321
[22] Hald J. J Pressure Ves Technol, 2008; 85: 30
[23] Maruyama K, Sawada K, Koike J. ISIJ Int, 2001; 41: 641
[24] Robertson D G, Holdsworth S R. ECCC Data Sheets 2005. Surrey: ETD Ltd., 2005: 55
[25] Kimura K, Sawada K, Kushima H, Kubo K. Int J Mater Res, 2008; 99: 395
[1] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[2] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[3] CHEN Jianjun, DING Yutian, WANG Kun, YAN Kang, MA Yuanjun, WANG Xingmao, ZHOU Shengming. Effects of Laves Phase on Burst Behavior of GH3625 Superalloy Pipe During Hot Extrusion[J]. 金属学报, 2021, 57(5): 641-650.
[4] ZHENG Qiuju, YE Zhongfei, JIANG Hongxiang, LU Ming, ZHANG Lili, ZHAO Jiuzhou. Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys[J]. 金属学报, 2021, 57(1): 103-110.
[5] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[6] Sensen HUANG,Yingjie MA,Shilin ZHANG,Min QI,Jiafeng LEI,Yaping ZONG,Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. 金属学报, 2019, 55(6): 741-750.
[7] Zhiming GAO, Wanqi JIE, Yongqin LIU, Haijun LUO. Formation Mechanism and Coupling Prediction of Microporosity and Inverse Segregation: A Review[J]. 金属学报, 2018, 54(5): 717-726.
[8] Gaowu QIN, Hongbo XIE, Hucheng PAN, Yuping REN. A New Class of Ordered Structure Between Crystals and Quasicrystals[J]. 金属学报, 2018, 54(11): 1490-1502.
[9] Zhenliang LI,Fei LIU,Aiping YUAN,Baoyu DUAN,Xiaowei LI,Yiming LI. EFFECTS OF ROLLING DEFORMATION ON TEXTURE AND LPSO PHASE OF SPRAY-DEPOSITED MAGNESIUM ALLOYS CONTAINING Nd[J]. 金属学报, 2016, 52(8): 938-944.
[10] Kejian LI,Zhipeng CAI,Yifei LI,Jiluan PAN. EVOLUTION BEHAVIOR OF LAVES PHASE IN FB2 MARTENSITIC STAINLESS STEEL DURING WELDING[J]. 金属学报, 2016, 52(6): 641-648.
[11] Qian SUN,Hongxiang JIANG,Jiuzhou ZHAO. EFFECT OF MICRO-ALLOYING ELEMENT Bi ON SOLIDIFICATION AND MICROSTRUCTURE OF Al-Pb ALLOY[J]. 金属学报, 2016, 52(4): 497-504.
[12] Jialong TIAN,Yongcan LI,Wei WANG,Wei YAN,Yiyin SHAN,Zhouhua JIANG,Ke YANG. ALLOYING ELEMENT SEGREGATION EFFECT IN A MULTI-PHASE STRENGTHENED MARAGING STAINLESS STEEL[J]. 金属学报, 2016, 52(12): 1517-1526.
[13] MA Ping, WU Erdong, LI Wuhui, SUN Kai, CHEN Dongfeng. MICROSTRUCTURES AND HYDROGEN STORAGE PROPERTIES OF Ti0.7Zr0.3(Cr1-xVx)2 ALLOYS[J]. 金属学报, 2014, 50(4): 454-462.
[14] WANG Xue, YU Shumin, REN Yaoyao, LIU Hong, LIU Hongwei, HU Lei. LAVES PHASE EVOLUTION IN P92 STEEL DURING AGEING[J]. 金属学报, 2014, 50(10): 1195-1202.
[15] YANG Zenan, YANG Zhigang, XIA Yuan, ZHANG Chi. CALCULATION OF AUSTENIZATION RATE OF LAMELLAR PEARLITE[J]. 金属学报, 2013, 49(7): 890-896.
No Suggested Reading articles found!