Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (1): 41-46    DOI:
论文 Current Issue | Archive | Adv Search |
DESIGN AND PREPARATION OF IN SITU Pb-RICH PARTICLES/Al BASE METALLIC GLASS MATRIX COMPOSITE
HE Jie; LI Haiquan; XING Chengrao; ZHAO Jiuzhou
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

HE Jie LI Haiquan XING Chengrao ZHAO Jiuzhou. DESIGN AND PREPARATION OF IN SITU Pb-RICH PARTICLES/Al BASE METALLIC GLASS MATRIX COMPOSITE. Acta Metall Sin, 2010, 46(1): 41-46.

Download:  PDF(996KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The typical Al-Pb immiscible alloy and the additional elements Ni, Y and Co were selected, and a new Al82.87Pb2.5Ni4.88Y7.8Co1.95 multicomponent immiscible alloy has been designed. The ribbon samples of the multicomponent alloys were prepared by rapidly quenched method. The microstructure characterization, thermal stability and formation of composite microstructure have been investigated. The results indicate that the single-phase alloy melt separates into AlNiYCo-rich and Pb-rich liquids during cooling through the miscibility gap. Subsequently, the separated AlNiYCo-rich and Pb-rich liquids solidify into Al-based glassy matrix and crystalline Pb-rich phase, respectively. The crystalline Pb-rich phase in form of spheres is homogeneously embedded into the Al-based metallic glass matrix. Based on the mechanism of the liquid-liquid phase transformation in the miscibility gap of the multicomponent immiscible alloy, a new method has been developed to produce in situ crystalline spheres embedded into the metallic glass matrix by rapid solidification.

Key words:  multicomponent immiscible alloy      liquid-liquid phase transformation      rapid solidification      metallic glass composite      in situ crystalline sphere     
Received:  17 July 2009     
ZTFLH: 

TG113

 
Fund: 

Supported by National Natural Science Foundation of China (No.50704032), Knowledge Innovation Program of Chinese Academy of Sciences and Natural Science Foundation of Liaoning Province (No.20081009)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2010/V46/I1/41

[1] Ratke L, Diefenbach S. Mater Sci Eng, 1995; 15R: 263
[2] He J, Zhao J Z, Ratke L. Acta Mater, 2006; 54: 1749
[3] Tomellini M. J Mater Sci, 2008; 43: 7102
[4] Liu Y, Guo J J, Jia J, Su Y Q, Ding H S. Acta Metall Sin, 2001; 37: 917
(刘源, 郭景杰, 贾均, 苏彦庆, 丁宏升. 金属学报, 2001; 37: 917)

[5] Wang H P, Cao C D, Wei B B. Chin Sci Bull, 2004; 49: 220
[6] He J, Zhao J Z, Wang X F, Gao L L. Metall Mater Trans, 2005; 36A: 2449
[7] Mirkovic D, Grobner J, Schmid–Fetzer R. Acta Mater, 2008; 56: 5214
[8] Curiotto S, Battezzati L, Johnson E, Pryds N. Acta Mater, 2007; 55: 6642
[9] He J, Li H Q, Zhao J Z, Dai C L. Appl Phys Lett, 2008; 93: 131907
[10] He J, Zhao J Z, Zhang X F. Chin Pat, ZL200710010037.2, 2007
(何杰, 赵九洲, 张显飞. 中国专利, ZL200710010037.2, 2007)
[11] He J, Zhao J Z, Liu J. Chin Pat, ZL200710010038.7, 2007
(何 杰, 赵九洲, 刘 俊. 中国专利, ZL200710010038.7, 2007)
[12] He J, Zhao J Z, Zhao Y. Chin Pat, ZL200710010039.1, 2007
(何杰, 赵九洲, 赵毅. 中国专利, ZL200710010039.1, 2007)
[13] Li Y, Poon S J, Shiflet G J, Xu J, Kim D H, Loffler J F. MRS Bull, 2007; 32: 624
[14] Kimura H, Masumoto T, Ast D G. Acta Metall, 1987; 35: 1757
[15] Kato H, Inoue A. Mater Trans JIM, 1997; 38: 793
[16] Choi–Yim H, Bush R, K¨oster U, Johnson W L. Acta Mater, 1999; 47: 2455
[17] Wang W H, Bai H Y. Mater Lett, 2000; 44: 59
[18] Hui X D, Kou H C, He J P, Wang Y L, Dong W, Chen G L. Intermetallics, 2002; 10: 1065
[19] Deledda S, Eckert J, Schultz L. Scr Mater, 2002; 46: 31
[20] Liu T, Shen P, Qiu F, Yin Z F, Lin Q L, Jiang Q C, Zhang T. Scr Mater, 2009; 60: 84
[21] Sun Y F, Zhang G S, Wei B C, Li W H, Wang Y R. Chin Sci Bull, 2004; 49: 542
[22] Zhang C M, Hui X D, Wang M L, Chen G L. J Univ Sci Technol, 2008; 15B: 505
[23] Zhang W, Ishihara S, Inoue A. Mater Trans JIM, 2002; 43: 1767
[24] Lee M H, Sordelet D J. J Mater Res, 2006; 21: 492
[25] Hays C C, Kim C P, Johnson W L. Phys Rev Lett, 2000; 84: 132901
[26] Hays C C, Kim C P, Johnson W L. Mater Sci Eng, 2001; A304–306: 650
[27] Shen J, Wang G, Sun J F, Stachurski Z H, Yan C, Ye L, Zhou B D. Intermetallics, 2005; 13: 79
[28] Huang Y L, Bracchi A, Niermann T, Seibt M, Danilov D, Nestler B, Schneider S. Scr Mater, 2005; 53: 93
[29] Hui X, Dong W, Chen G L, Yao K F. Acta Mater, 2007; 55: 907
[30] Lu Z P, Ma D, Liu C T, Chang Y A. Intermetallics, 2007; 15: 253
[31] Eckert J, Das J, He G, Calin M, Kim K B. Mater Sci Eng, 2007; A449–451: 24
[32] Huang J C, Chu J P, Jang J S C. Intermetallics, 2009; 17: 973
[33] Fan J T, Zhang Z F, Mao S X, Shen B L, Inoue A. Intermetallics, 2009; 17: 445
[34] Sun G Y, Chen G, Liu C T, Chen G L. Scr Mater, 2006; 55: 375
[35] Sun G Y, Chen G, Chen G L. Intermetallics, 2007; 15: 632
[36] Zhao J Z, He J, Hu Z Q, Ratke L. Z Metallk, 2004; 95: 362
[37] Inoue A. Acta Mater, 2000; 48: 279
[38] Boer F R, Boom R, Mattens W C M, Miedema A R,
Niessen A K. Cohesion and Structure. Amsterdam: Elsevier Science, 1988: 215
[39] Hao S M. Material Thermodynamics. Beijing: Chemical Industry, 2003: 48
(郝士明. 材料热力学. 北京: 化学工业出版社, 2003: 48)

[40] Hui X D, Yang Y S, Chen X M, Hu Z Q. Acta Metall Sin, 1999; 35: 1306
(惠希东, 杨院生, 陈晓明, 胡壮麒. 金属学报, 1999; 35: 1306)
[41] Zhao J Z, Ratke L, Jia J, Li Q C. J Mater Sci Technol, 2002; 18: 197
[42] Zhao J Z, Ratke L. Scr Mater, 1998; 39: 181
[43] He J, Zhao J Z, Wang X F, Li Z Y. Acta Metall Sin, 2006; 42: 67
(何杰, 赵九洲, 王晓峰, 李中原. 金属学报, 2006; 42: 67)
[44] Inoue A. Matsumoto N, Matsumoto T. Mater Trans JIM, 1990; 31: 493
[45] Perepezko J H, Uttormark M J. Metall Mater Trans, 1996; 27A: 533
[46] Singh A, Tsai A P. Jpn J Appl Phys, 2000; 39: 4082
[47] Perepezko J H, Sebright J L, Hockel P G, Wilde G. Mater Sci Eng, 2002; A326: 144
[48] He J, Zhao J Z. Mater Sci Eng, 2005; A404: 85

[1] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[2] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[3] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[4] Jinfu LI, Yaohe ZHOU. Remelting of Primary Solid in Rapid Solidification of Deeply Undercooled Alloy Melts[J]. 金属学报, 2018, 54(5): 627-636.
[5] Yanchun ZHAO, Hao SUN, Chunling LI, Jianlong JIANG, Ruipeng MAO, Shengzhong KOU, Chunyan LI. High Temperature Deformation Behavior of High Strength and Toughness Ti-Ni Base Bulk Metallic Glass Composites[J]. 金属学报, 2018, 54(12): 1818-1824.
[6] Qianqian GU, Ying RUAN, Haizhe ZHU, Na YAN. Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy[J]. 金属学报, 2017, 53(6): 641-647.
[7] Huogen HUANG,Hongyang XU,Pengguo ZHANG,Yingmin WANG,Haibo KE,Pei ZHANG,Tianwei LIU. U-Cr Binary Alloys with Anomalous Glass-Forming Ability[J]. 金属学报, 2017, 53(2): 233-238.
[8] Lei ZHAO,Hongxiang JIANG,Tauseef AHMAD,Jiuzhou ZHAO. STUDY OF SOLIDIFICATION FOR GAS-ATOMIZED DROPLET OF Cu-Co-Fe ALLOY[J]. 金属学报, 2015, 51(7): 883-888.
[9] CHEN Feng, SU Dexi, TONG Yunxiang, NIU Liqun,WANG Haibo, LI Li. MICROSTRUCTURE AND PHASE TRANSFORMATION OF Ni43Co7Mn41Sn9 HIGH TEMPERATURE SHAPE MEMORY ALLOY RIBBON[J]. 金属学报, 2013, 49(8): 976-980.
[10] CHEN Shu, ZHAO Jiuzhou. SOLIDIFICATION OF MONOTECTIC ALLOY UNDER LASER SURFACE TREATMENT CONDITIONS[J]. 金属学报, 2013, 49(5): 537-543.
[11] LI Shaoqiang, CHEN Zhiyong, WANG Zhihong, LIU Jianrong, WANG Qingjiang, . MICROSTRUCTURE STUDY OF A RAPID SOLIDIFICATION POWDER METALLURGY HIGH TEMPERATURE TITANIUM ALLOY[J]. 金属学报, 2013, 29(4): 464-474.
[12] GAO Du, CHEN Guang, FAN Cang. INFLUENCE OF MELT HOLDING TEMPERATURES ON MECHANICAL PROPERTIES AT ROOM TEMPERATURE OF Wf/Zr-BASED METALLIC GLASS COMPOSITES[J]. 金属学报, 2013, 49(11): 1481-1486.
[13] SHENG Liyuan, ZHANG Wei, LAI Chen, GUO Jianting,XI Tingfei, YE Hengqiang. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LAVES PHASE STRENGTHENING NiAl BASE COMPOSITE FABRICATED BY RAPID SOLIDIFICATION[J]. 金属学报, 2013, 49(11): 1318-1324.
[14] ZHANG Bo, FU Huameng, ZHU Zhengwang, ZHANG Haifeng,DONG Chuang,HU Zhuangqi. EFFECT OF W FIBER DIAMETER ON THE COMPRESSIVE MECHANICAL PROPERTIES OF THE Zr-BASED METALLIC GLASS COMPOSITES[J]. 金属学报, 2013, 49(10): 1191-1200.
[15] MO Yunfei, LIU Rangsu, LIANG Yongchao, ZHENG Naichao, ZHOU Lili,TIAN Zean, PENG Ping. MOLECULAR DYNAMICS SIMULATION ON THE EVOLUTION OF MICROSTRUCTURES OF LIQUID ZnxAl100−x ALLOYS DURING RAPID SOLIDIFICATION[J]. 金属学报, 2012, 48(8): 907-914.
No Suggested Reading articles found!