Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (6): 729-736    DOI:
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND PHASE EVOLUTION IN Ti60--Ti2AlNb GRADIENT MATERIAL PREPARED BY LASER SOLID FORMING
YANG Mocong; LIN Xin; XU Xiaojing; CHEN Jing; HUANG Weidong
State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072
Cite this article: 

YANG Mocong LIN Xin XU Xiaojing CHEN Jing HUANG Weidong. MICROSTRUCTURE AND PHASE EVOLUTION IN Ti60--Ti2AlNb GRADIENT MATERIAL PREPARED BY LASER SOLID FORMING. Acta Metall Sin, 2009, 45(6): 729-736.

Download:  PDF(4018KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ti60 titanium alloy and Ti2AlNb alloy have been developed to serve at 600 and 650---850℃, respectively. Because only some regions of hot--end components encounter extreme high temperature environments, it is appropriate to use functionally gradient materials (FGMs) according to the distribution of the working temperature. In this paper, a thin--wall Ti60--Ti2AlNb alloy with composition gradient was fabricated by laser solid forming (LSF). The phase morphological evolution and microstructure evolution along the gradient direction were investigated. With the increase of Al and Nb contents, a series of phase evolutions along the compositional gradient occurred: α+βα+α' →α' →α+βα+β/B2+α2 →β/B2+α2β/B2+α2+O →B2+O → B2. α--phase can exist in a wide composition range from Ti60 to Ti60--60%Ti2AlNb (mass fraction). The hardness of the material increases with the increase of Al and Nb contents, and reaches the maximum when B2+O phases appear, and then decreases sharply as obtaining the whole B2 phase at the top position of Ti2AlNb part. Based on the non--equilibrium phase diagram of the Ti--rich corner, the phase morphological evolution during forming of the gradient materials was explained on combining with the analysis of the influence of the Al and  Nb on the stabilities of α, α2, β/B2 and O phases in titanium alloys and the effects of recurrent tempering/annealing and heat accumulation in laser solid forming.

Key words:  laser solid forming      Ti60      Ti2AlNb      functionally gradient material      phase transformation      microhardness     
Received:  08 December 2008     
ZTFLH: 

TG132.32

 
Fund: 

Supported by Program for New Century Excellent Talents in University of China (No. 06--0879), National High Technology Research and Development Program of  China (No. 2006AA03Z0449) and National Basic Research Program\par of China (No. 2007CB613805)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I6/729

[1] Cao C X. Rare Met Lett, 2006; 25(1): 17
(曹春晓. 稀有金属快报, 2006; 25(1): 17)
[2] Tang Z L, Wang F H, Wu W T, Wang Q J, Li D. Mater Sci Eng, 1998; A255: 133
[3] Wanjara P, Jahazi M, Monajati H, Yue S. Mater Sci Eng, 2006; A416: 300
[4] Vermaa R, Ghosh A K, Merrickb H, Mukherji T. Mater Sci Eng, 1995; A191: 151
[5] Tetyukhin V, Levin I, Ilyenko V. Heatresistant Ttitanium Alloys with Enhanced, Heat Resistance, Thermal Stability. Cambridge, UK: Cambridge University Press, 1996:2430
[6] Li M Q, Lin Y Y. Int J Hydrogen Energy, 2007; 32: 626
[7] Cai J M, Li Z X, Ma J M, Huang X, Cao C X. Mater Rev,2005; 19(1): 50
(蔡建明, 李臻熙, 马济民, 黄旭, 曹春晓. 材料导报, 2005; 19(1): 50)
[8] Banerjee D, Gogia A K, Nandy T K, Joshi V A. Acta Metall, 1988; 36: 871
[9] Banerjee D. Prog Mater Sci, 1997; 42: 135
[10] Huang W D, Lin X, Chen J, Liu Z X, Li Y M. Laser Solid Forming. Xi’an: Northwestern Polytechnical University Press, 2007: 5
(黄卫东, 林鑫, 陈静, 刘振侠, 李延民. 激光立体成形. 西安: 西北工业大学出版社, 2007: 5)
[11] Lin X, Yue T M, Yang H O, Huang W D. Acta Mater, 2006; 54: 1901
[12] Lin X, Yue T M, Yang H O, Huang W D. Mater Sci Eng, 2005; A391: 325
[13] Liu J T, Lin X, L¨u X W, Chen J, Huang W D. Acta Metall Sin, 2008; 44: 1006
(刘建涛, 林鑫, 吕晓卫, 陈静, 黄卫东. 金属学报, 2008; 44: 1006)
[14] Xu X J, Lin X, Yang M C, Chen J, Huang W D. Acta Metal Sin, 2008; 44: 1013
(许小静, 林鑫, 杨模聪, 陈静, 黄卫东. 金属学报, 2008; 44: 1013)
[15] Collins P C, Banerjee R, Banerjee S, Fraser H L. Mater Sci Eng, 2003; A352: 118
[16] Deng A H. Shanghai Nonferrous Met, 1999; 20: 193
(邓安华. 上海有色金属, 1999; 20: 193)
[17] Wang J Y, Ge Z M, Zhou Y B. Aeronautical Titanium Alloy. Shanghai: Shanghai Science & Technology Press, 1985: 120
(王金友, 葛志明, 周彦邦. 航空用钛合金. 上海: 上海科学技术出版社, 1985: 120)
[18] Zhang J, Ma H F. J Shenyang Univ, 2006; 18(4): 1
(张钧, 马鸿峰. 沈阳大学学报, 2006; 18(4): 1)
[19] Boehlert C J, Majumdar B S, Seetharaman V, Miracle D B. Metall Mater Trans, 1999; 30A: 2305

[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[6] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[8] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[9] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[10] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[11] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[12] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[13] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[14] ZHU Weiqiang, YU Muzhi, TANG Xu, CHEN Xiaoyang, XU Zhengbing, ZENG Jianmin. Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy[J]. 金属学报, 2020, 56(11): 1485-1494.
[15] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
No Suggested Reading articles found!