Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (6): 692-696    DOI:
论文 Current Issue | Archive | Adv Search |
MOLECULAR DYNAMICS SIMULATION OF CRYSTALLIZATION PROCESSES FOR AMORPHOUS Cu
WANG Rongshan 1; 3; HOU Huaiyu 2; CHEN Guoliang1; 2
1. State Key Laboratory for Advanced Metal & Materials; University of Science and Technology Beijing; Beijing 100083
2. Department of Materials Science and Engineering; Nanjing University of Science and Technology; Nanjing 210094
3. Suzhou Nuclear Power Research Institute Co. Ltd.; Suzhou 215004
Cite this article: 

WANG Rongshan HOU Huaiyu CHEN Guoliang. MOLECULAR DYNAMICS SIMULATION OF CRYSTALLIZATION PROCESSES FOR AMORPHOUS Cu. Acta Metall Sin, 2009, 45(6): 692-696.

Download:  PDF(1501KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The crystallization processes for amorphous Cu were investigated by the molecular dynamics technique with the tight--binding potential, and the changes of pair correlation distribution function, total energy and volume of the system during the processes were analyzed, meanwhile the static structural information on the pair distribution functions and distribution of the coordination numbers were obtained. The results show that the movement of Cu atoms has slightly effect on the short--range ordered structures at the initial heating period of amorphous Cu, 1431 and 1541 bonds change firstly into 1421 bond at the first stage of structural transformation, and the number of 1421 bond increases at above 400 K and gets its maximum at about 600 K, then decreases with temperature increasing and has a quick decline at melting point.

Key words:  amorphous Cu      molecular dynamics      simulation      crystallization     
Received:  11 June 2008     
ZTFLH: 

TG146.4

 
Fund: 

Supported by National Natural Science Foundation of China (No.50431030)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I6/692

[1] Gu T K, Qin J Y, Xu C Y, Bian X F. Phys Rev, 2004; 70B: 144204
[2] Zhang T, Wu A, Guan L, Qi Y. Chin J Chem, 2004; 22: 148
[3] Gu T K, Qin J Y, Bian X F, Xu C Y, Qi Y H. Phys Rev, 2004; 70B: 245214
[4] Allen M P, Tildesley D J. Computer Simulation of Liquid. Vol.17, Oxford: Clardon Press, 1987: 300
[5] Deng D, Argon A S, Yip S. Philos Trans Soc R London, 1989; 329A: 549
[6] James H R. Phy Rev, 1984; 29B: 2963
[7] Yang Q W, Pang S J, Zhang T. J Univ Sci Technol Beijing, 2007; 14(Suppl.): 73
[8] Shimono M, Onodera H. Mater Sci Eng, 2001; A304–306:515
[9] Kazanc S. Phys Lett, 2007; 365A: 473
[10] Liu X J, Chen G L, Hui X D, Hou H Y, Yao K F, Liu C T. J Appl Phys, 2007; 102: 063515–1
[11] Liu X J, Chen G L, Hou H Y, Hui X D, Lu Z P, Yao K F,Liu C T. Acta Mater, 2008; 56: 2760
[12] Rifkin J. XMD—Molecular Dymamics for Metals and Ceramics, http://xmd.sourceforge.net
[13] Cleri F, Rosato V. Phys Rev, 1993; 48B: 22
[14] Honeycutt J D, Andersen H C. J Chem Phys, 1987; 91: 4950

[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[4] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[5] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[7] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[8] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[9] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[11] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[12] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[13] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[14] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[15] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
No Suggested Reading articles found!