Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (6): 687-691    DOI:
论文 Current Issue | Archive | Adv Search |
ELECTRONIC STRUCTURE OF DIFFERENT REGIONS AND ANALYSIS OF STRESS CORROSION MECHANISM OF Al--Zn--Mg--Cu ALLOYS
ZHANG Guoying; ZHANG Hui; FANG Geliang; YANG Lina
College of Physics Science and Technology; Shenyang Normal University; Shenyang  110034
Cite this article: 

ZHANG Guoying ZHANG Hui FANG Geliang YANG Lina. ELECTRONIC STRUCTURE OF DIFFERENT REGIONS AND ANALYSIS OF STRESS CORROSION MECHANISM OF Al--Zn--Mg--Cu ALLOYS. Acta Metall Sin, 2009, 45(6): 687-691.

Download:  PDF(713KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The atomic cluster models of α--Al, η--phase and large angle grain boundary of α--Al in Al--Zn--Mg--Cu alloys have been constructed by computer program. The environment--sensitive embedding energies of Zn, Mg, Cu and H atoms, interaction energies, Fermi energies and densities of state have been calculated by recursion method. The stress corrosion cracking behavior of Al--Zn--Mg--Cu alloys has been analyzed according to the calculated electronic parameters. The results show that Mg, Zn and H atoms are easy to segregate on grain boundaries. Mg promotes the segregation of H on grain boundary, which leads to the embrittlement of grain boundary because of the attraction of Mg to H. Zn increases the difference of electrode potential between boundary and grain, which deteriorates the stress corrosion resistance of Al--Zn--Mg--Cu alloys. Cu reduces the difference of Fermi energies between grain and grain boundary, and lowers the electrode potential difference between grain and grain boundary, which helps to slow up the corrosion process. The calculated results also indicate that the Fermi energy of η--phase is the highest, so η--phase will decompose firstly in the corrosion process as anode. Discontinuous distribution of η--phase along grain boundary can weaken the segregation of H on the grain boundary because of the capture of η--phase to H, and improve the stress corrosion resistance of Al--Zn--Mg--Cu alloys, while the corrosion channel can form and speed up the corrosion process when η--phase distributes continuously on the grain boundary.

Key words:  Al--Zn--Mg--Cu alloy      electronic structure      stress corrosion mechanism     
Received:  10 November 2008     
ZTFLH: 

TG111.1

 
  TG146.21

 
Fund: 

Supported by National Natural Science Foundation of China (No. 50671069), Science Research Program of Education Bureau of Liaoning Province
(Nos. 2007T165 and  2008511) and Science and Technology Development Program of Shenyang (No. 1072026100)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I6/687

[1] David A L, Ray M H. Light Met Age, 1991; 2(9): 11
[2] Wang H B, Huang J F, Yang B. Mater Rev, 2003; 17(9):1
(王洪斌, 黄进峰, 杨 滨. 材料导报, 2003; 17(9): 1)
[3] Ferrer C P, Koul M G, Connolly B J, Moran A L. Corrosion, 2003; 59: 520
[4] Ramgopal T, Gouma P L, Frankel G S. Corrosion, 2002;58: 687
[5] Liu Y. J Beijing Union Univ(Nat Sci), 2006; 20(1): 31
(刘 洋. 北京联合大学学报(自然科学版), 2006; 20(1): 31)
[6] Lu H. PhD Thesis, University of Science and Technology Beijing, 1998
(吕 宏. 北京科技大学博士学位论文, 1998)
[7] Huang X Y, Li Y H, Xiao J M. J Chin Soc Corros Prot,1984; 4(1): 42
(黄显亚, 李永洪, 肖纪美. 中国腐蚀与防护学报, 1984; 4(1): 42)
[8] Najjar D, Magnin T, Waner T J. Mater Sci Eng, 1997,A238: 293
[9] Xiao S X, Wang C Y, Chen T L. The Application of the Discrete Variational Method in the Density Functional Theory to Chemistry and Materials Physics. Beijing: Science Press, 1998: 92
(肖慎修, 王崇愚, 陈天朗. 密度泛函理论的离散变分方法在化学和材料物理学中的应用. 北京: 科学出版社, 1998: 92 )
[10] Ashby M F. Philos Trans R Soc London, 1987; 393A: 322
[11] Zhou D W, Peng P, Liu J S. Sci China, 2006; 49E: 129
[12] Peng P, Han S C, Zheng C X, Liu R S, Jin T, Hu Z Q.Rear Met Mater Eng, 2005; 34: 854
(彭平, 韩绍昌, 郑采星, 刘让苏, 金涛, 胡壮麒. 稀有金 属材料与工程, 2005; 34: 854)
[13] Liu G L. Acta Phys Sin, 2006, 55: 1983
(刘贵立. 物理学报, 2006; 55: 1983)
[14] Liu G L, Li R D. Acta Phys Sin, 2006; 55: 776
(刘贵立, 李荣德. 物理学报, 2006; 55: 776)
[15] Haydock R. Solid State Physics. Vol.35, New York: Academic Press, 1980: 216
[16] Harrison W A. Electronic Structure and the Properties of Solids. San Francisco: Freeman, 1980: 551
[17] Slater J C, Koster G F. Phys Rev, 1954; 94: 1498
[18] Wang L G, Wang C Y. Mater Sci Eng, 1997; A234–236: 52
[19] Gruhl W. Aluminum, 1978; 54: 323
[20] Fan X G, Jiang D M, Shan C Z. Light Alloys Process Technol, 2006; 34(2): 31
(樊喜刚, 蒋大鸣, 单长智. 轻合金加工技术, 2006; 34(2): 31)
[21] Liu X Y, Xu W, Foiles S M, Adams J B. Appl Phys Lett, 1998; 72: 1578
[22] Liu X G, Wang X W, Wang J Y, Zhang H Y. J Phys: Condens Matter, 2005; 17: 4301
[23] Hu Q M, Xu D S, Li D. Acta Metall Sin, 2002; 38(Suppl. 1): 562
(胡青苗, 徐东升, 李 \ \ 东. 金属学报, 2002; 38(增刊 1): 562)
[24] Malis T, Chaturvedi M C. J Mater Sci, 1982; 17: 1479
[25] Zeng Y, Yin Z M, Pan Q L. J Cent South Univ Technol, 2002; 33: 592
(曾渝, 尹志民, 潘青林. 中南工业大学学报, 2002; 33: 592)
[26] Liu X G, Wang X W, Wang J Y, Zhang H Y. J Mater Sci Technol, 2006; 22: 135

[1] HUANGFU Hao, WANG Zilong, LIU Yongli, MENG Fanshun, SONG Jiupeng, QI Yang. A First Principles Investigation of W1 - x Ir x Alloys: Structural, Electronic, Mechanical, and Thermal Properties[J]. 金属学报, 2022, 58(2): 231-240.
[2] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[3] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[4] MAO Pingli, YU Bo, LIU Zheng, WANG Feng, JU Yang. FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE AND ELASTIC PROPERTY OF AB2 TYPE INTERMETALLICS IN Mg-Zn-Ca ALLOY[J]. 金属学报, 2013, 49(10): 1227-1233.
[5] ZHOU Dianwu LIU Jinshui XU Shaohua PENG Ping. FIRST–PRINCIPLE CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF Al2Sr AND Mg2Sr PHASES[J]. 金属学报, 2011, 47(10): 1315-1320.
[6] ZHOU Dianwu XU Shaohua ZHANG Fuquan PENG Ping LIU Jinshui. FIRST-PRINCIPLES CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF AB2 TYPE INTERMETALLICS IN ZA62 MAGNESIUM ALLOY[J]. 金属学报, 2010, 46(1): 97-103.
[7] LIANG Chu; XU Lingyan; YAO Chunxian; LAN Zhiqiang; LI Guangxu; GUO Jin. First-Principles Investigation on Effect of Co On Hydrogen Storage Properties of ZrMn2 Alloy[J]. 金属学报, 2008, 44(3): 351-356 .
[8] Liu Guili. The study on Ti alloys stress corrosion mechanicby recursion method[J]. 金属学报, 2007, 43(3): 249-253 .
[9] TAO Huijin; XIE Youqing; PENG Hongjian; YU Fangxin; LIU Ruifeng; LI Xiaobo. Temperature Dependence of tom States and Physical Properties of fcc-, metastable hcp- and bcc- Cu[J]. 金属学报, 2006, 42(6): 565-571 .
[10] JIAN Xiaoling. Investigations of Electronic Structures and Bond Characteristics of ZrMn2 Alloy and Its Hydride by First Principle[J]. 金属学报, 2006, 42(2): 123-128 .
[11] ZHANG Xiaozhong; ZHANG Lina; MA Yue; QI Junjie; YUAN Jun. Electronic Structure Characterization of Bonding of Grain Boundaries and Fracture Mode of Steels[J]. 金属学报, 2005, 41(6): 617-621 .
[12] DONG Jianmin; LI Hua; ZHANG Changwen; PAN Fengchun; WANG Yongjuan; ZHEN Peng. Electronic structure and magnetism of clusters Nin(n=2-6)[J]. 金属学报, 2005, 41(3): 242-244 .
[13] SONG Yan; YANG Rui; LI Dong; HU Zhuangqi(Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). ELECTRONIC STRVCTURE ANALYSIS OF PRIMARY SLIP PLANES IN HEXAGONAL CLOSE-PACKED METALS[J]. 金属学报, 1998, 34(7): 673-677.
[14] LI Hua; DONG Jianmin; MEI Lianmpo; HU Jifan; GAO Ruwei; DING Xuehou (Shandong University; Jinan 250100) (Manuscript received 1996-08-26; in revised form 1996- 12-26). STUDY ON THE EXCHANGE SPLITTING AND MAGNETISM OF IRON CLUSTERS[J]. 金属学报, 1997, 33(8): 791-796.
[15] WANG Chongyu (Central Iron and Steel Research Institute; Ministry of Metallurgical Industry; Beijing 100081). ENERGETICS OF METALLIC DEFECT AND ELECTRONIC STRUCTURE OF DOPED GRAIN BOUNDARY[J]. 金属学报, 1997, 33(1): 54-68.
No Suggested Reading articles found!