Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (12): 1425-1434    DOI:
论文 Current Issue | Archive | Adv Search |
QUANTITATIVE ANALYSIS FOR THE DISPLACEMENT OF TENT–SHAPED SURFACE RELIEF OF LATH MARTENSITE IN Fe–BASED ALLOY
WU Jing 1; LIU Xinxin 1; GU Xinfu 1; DAI Fuzhi 1; YANG Haitao 2; ZHANG Wenzheng 1
1. Laboratory of Advanced Materials; Department of Materials Science and Engineering; Tsinghua University;Beijing 100084
2. Tsinghua–Foxconn Nanotechnology Research Center; Tsinghua University; Beijing 100084
Cite this article: 

WU Jing LIU Xinxin GU Xinfu DAI Fuzhi YANG Haitao ZHANG Wenzheng. QUANTITATIVE ANALYSIS FOR THE DISPLACEMENT OF TENT–SHAPED SURFACE RELIEF OF LATH MARTENSITE IN Fe–BASED ALLOY. Acta Metall Sin, 2009, 45(12): 1425-1434.

Download:  PDF(3195KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Lath martensite with a dislocation substructure is one of the most common forms of martensite in structural steels. Surface relief has been regarded as an important characteristic in the martensitic transformation. Crystallographic features on surface relief are essential to get into deep insight of the long range strain field in the transformation, and explore the mechanism of the phase transformation. However, very limited experimental data on the shape strain associated with the formation of surface relief caused by the lath martensite have been reported so far, especially for the quantitative study of the displacement vector. The present investigation was carried out to study the shape deformation in the formation of the lath martensite on the austenite matrix in an Fe–20.2Ni–5.5Mn (mass fraction, %) alloy. The shape strain accompanying surface relief, such as the magnitude and direction of the displacement vector, has been concerned in a quantitative way. The morphology of the relief was studied by the optical microscope (OM) and the atomic force microcope (AFM). The orientations of the matrix grain and the lath were measured by the electron backscattered diffraction (EBSD), respectively, which was used to determine the orientation of the habit plane, and the orientation relationship (OR) between the lath martensite and its neighboring matrix. Combing the data from EBSD and AFM, it is concluded that the relief is produced by a single bcc crystal, which exhibits a tent-shaped relief. Based on an electron backscattered diffraction analysis, the ustenite/martensite orientation relationship is found to be in the closer vicinity of K–S orientation relationship, which is consistent with that in bulk materials obtained by transmissin electron microscope (TEM), and the habit plane is determined to be near (111)f . The largest shear angle for the relief is calculated to be 27.49°, and the directions of comined displacement vector are scattered around [121]f . However, the bserved maximum surface tilt angle is 22.41°, which is smaller than the calculated value. Considerinthe habit plane is not perpendicular to the pre–polishing surface, the measured smaller value f tilt angles is reasonable.

Key words:  phase transformation      lath martensitesurface relief      shape strain     
Received:  21 July 2009     
ZTFLH: 

O71

 
Fund: 

Supported by National Natural Science Foundation of China (No.50671051)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I12/1425

[1] Clark H M, Wayman C M. Phase Transformations. Ohio: ASM, 1970: 61
[2] Furuhara T, Miyajima N, Moritani T, Maki T. J Phys IV Fr, 2003; 112: 319
[3] Sandvik B P J, Wayman C M. Metall Trans, 1983; 14A:823
[4] Wayman C M. In: Aaronson H I eds, Proc Int Conf on Solid: Solid Phase Transformations, Waitendale, PA:Metallurgical Society of AIME, 1981: 119
[5] Morito S, Huang X, Furuhara T, Maki T, Hansen N. Acta Mater, 2006; 54: 5323
[6] Kitahara H, Ueji R, Tsuji N, Minamino Y. Acta Mater, 2006; 54: 1279
[7] Morito S, Tanaka H, Konishi R, Furuhara T, Maki T. Acta Mater, 2003; 51: 1789
[8] Sandvik B P J, Wayman C M. Metall Trans, 1983; 14A: 823
[9] Sandvik B P J, Wayman C M. Metall Trans, 1983; 14A: 809
[10] Fuentes M, Sevillano J G, Urcola J J, Zubillaga J C. Mater Sci Eng, 1980; 43: 109
[11] Sarma D S, Whiteman J A, Woodhead J H. Met Sci, 1976: 391
[12] Kelly P M, Jostsons A, Blake R G. Acta Metall Mater, 1990; 38: 1075
[13] Miyamoto G, Takayama N, Furuhara T. Scr Mater, 2009; 60: 1113
[14] Wakasa K, Wayman C M. Acta Metall, 1981; 29: 1013
[15] Yang D Z, Wayman C M. Scr Metall, 1983; 17: 1377
[16] Yang D Z, Wayman C M. Acta Metall, 1984; 32: 949
[17] Bryans B G, Bell T, Thomas V M. The Mechanism of Phase Transformations in Solids. London: Institute of Metals, 1969: 181
[18] Kajiwara S. Philos Mag, 1981; 43A: 1483
[19] Efsic E J, Wayman C M. Trans AIME, 1966; 239: 873
[20] Dunne D P, Bowles J S. Acta Metall, 1969; 17: 201
[21] Dunne D P, Wayman C M. Acta Metall, 1970; 18: 981
[22] Williams A J, Cahn R W, Barrett C S. Acta Metall, 1954; 2: 117
[23] Watson J D, McDougall P G. Acta Metall, 1973; 21: 961
[24] Lee H J, Aaronson H I. Acta Metall, 1988; 36: 787
[25] Swallow E S, Bhadeshia H K D H. Mater Sci Technol, 1996; 12: 121
[26] Yamamoto M, Fujisawa T, Saburi T. Ultramicroscopy, 1992; 42–44: 1422
[27] Yamamoto M, Fujisawa T, Sburi T, Kurumizawa T. Surf Sci, 1992; 266: 289
[28] Yang Z G, Fang H S, Wang J J, Zheng Y K. J Mater Sci Lett, 1996; 15: 721
[29] Yang Z G, Fang H S, Wang J J, Li C M, Zheng Y K. Phys Rev, 1995; 52B: 7879
[30] Waitz T, Karnthaler H P. Acta Metall, 1997; 45: 837
[31] Lin X P, Zhang Y, Gu N J, Meng Z W, Ma X L. Trans Mater Heat Treat, 2001; 22: 4
(林晓娉, 张勇, 谷南驹, 孟昭伟, 马晓丽. 材料热处理学报, 2001; 22: 4)
[32] Sandvik B P J, Wayman C M. Metall Trans, 1983; 14A:835
[33] Ross N D H, Crocker A G. Acta Metall, 1970; 18: 405
[34] Kelly P M. Mater Trans, 1992; 33: 235
[35] Moritani T, Miyajima N, Furuhara T, Maki T. Scr Mater, 2002; 47: 193
[36] Ogawa K, Kajiwara S. Philos Mag, 2004; 84: 2919
[37] Zhang W Z, Weatherly G C. Acta Mater, 1998; 46: 1837
[38] Zhang W Z, Weatherly G C. Scr Mater, 1997; 37: 1569
[39] Qiu D, Zhang W Z. Acta Metall Sin, 2005; 41: 897
(邱冬, 张文征. 金属学报, 2005; 41: 897)
[40] Yang P. The Technology of Electron Backscatter Diffraction and Its Application. Beijing: Metallurgical Industry Press, 2007: 55
(杨平. 电子背散射衍射技术及其应用. 北京: 冶金工业出版社, 2007: 55)
[41] Kitahara H, Ueji R, Ueda M. Mater Charact, 2005; 54: 378
[42] Wayman C M. Introduction to the Crystallography of Martensitic Transformations. New York: MacMillan, 1964: 122
[43] Bergeon N, Kajiwara S, Kikuchi T. Acta Mater, 2000; 48:4053

[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[6] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[8] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[9] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[10] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[11] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[12] ZHU Weiqiang, YU Muzhi, TANG Xu, CHEN Xiaoyang, XU Zhengbing, ZENG Jianmin. Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy[J]. 金属学报, 2020, 56(11): 1485-1494.
[13] Chen GU, Ping YANG, Weimin MAO. The Influence of Rolling Process on the Microstructure, Texture and Magnetic Properties of Low Grades Non-Oriented Electrical Steel After Phase Transformation Annealing[J]. 金属学报, 2019, 55(2): 181-190.
[14] SHI Zhangzhi, ZHANG Min, HUANG Xuefei, LIU Xuefeng, ZHANG Wenzheng. Research Progress in Age-Hardenable Mg-Sn Based Alloys[J]. 金属学报, 2019, 55(10): 1231-1242.
[15] Zhirong HE, Peize WU, Kangkai LIU, Hui FENG, Yuqing DU, Rongyao JI. Microstructure, Phase Transformation and Shape Memory Behavior of Chilled Ti-47Ni Alloy Ribbons[J]. 金属学报, 2018, 54(8): 1157-1164.
No Suggested Reading articles found!