Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (9): 1095-1098     DOI:
Research Articles Current Issue | Archive | Adv Search |
EFFECTS OF GRAIN-BOUNDARY PHASES ON HYDROGEN EMBRITTLEMENT OF FE-NI-CR AUSTENITIC ALLOY BY INTERNAL FRICTION
Jian ZHANG;;;
中国科学院金属研究所特殊环境材料研究部
Cite this article: 

Jian ZHANG. EFFECTS OF GRAIN-BOUNDARY PHASES ON HYDROGEN EMBRITTLEMENT OF FE-NI-CR AUSTENITIC ALLOY BY INTERNAL FRICTION. Acta Metall Sin, 2008, 44(9): 1095-1098 .

Download:  PDF(1234KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Dynamic mechanical analyzer (DMA) was used to investigate the hydrogen embrittlement of two Fe-Ni-Cr austenitic alloys. The effects of hydrogen and grain-boundary phases on internal friction of the alloys were analyzed. Optical microscopy and scanning electron microscopy were used to observe the microstructures and grain-boundary phases. The results show that abundant Ni3Ti phases and little carbides precipitated at grain boundaries in the alloy without boron, while and only little Ni3Ti phase and carbides precipitated at grain boundaries in the alloy with boron. Thermal hydrogen charging caused two new internal friction peaks at about 27℃ and 36℃ in the alloys with and without boron respectively, and the peaks were resulted from the interaction between hydrogen atoms and the interfaces of grain-boundary phases. Boron decreased the temperature of hydrogen-induced internal friction peaks, indicating that the diminishing in grain-boundary phase by boron reduced the ability of grain boundary to trap hydrogen atoms. As a result, boron lowered the ductility loss of the alloy.
Key words:  internal friction      hydrogen embrittlement      austenitic alloy      
Received:  15 January 2008     
ZTFLH:  TG142.2  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I9/1095

[1]Thompson A W.Mater Sci Eng,1974;14:253
[2]Louthan M R,Caskey G R,Donovan J A,Rawl D E.Mater Sci Eng,1972;10:357
[3]Ma L M,Liang G J,Fan C G,Li Y Y.Acta Metall Sin (Engl Lett),1997;10:206
[4]Ma L M,Li Y Y,Liu S W,Chen L.Acta Metall Sin,1988; 24:B427 (马禄铭,李依依,刘树望,陈廉.金属学报,1988;24:B427)
[5]Zhang J,Li X Y,Rong L J,Zheng Y N,Zhu S Y.Acta Metall Sin,2006;42:469 (张建,李秀艳,戎利建,郑永男,朱升云.金属学报,2006;42:469)
[6]Asano S,Shibata M,Tsunoda R.Scr Metall,1980;14: 377
[7]McLellan R B,Yoshihara M.Acta Metall,1987;35:197
[8]West A J,Louthan M R.Metall Trans,1979;10A:1675
[9]Gavriljuk V G,Hanninen H,Jagodzinsky Y N,Tarasenko A V,Tahtinen S,Ullakko K.Scr Metall Mater,1993;28: 901
[10]Usui M,Asano S.Scr Mater,1996;34:1691
[11]Peterson J A,Gibala R,Troiano A R.J Iron Steel Inst, 1969;207:86
[12]Xu J,Sun X K,Chen W X,Li Y Y.Acta Metall Mater, 1993;41:1455
[13]Chu W Y.Hydrogen Damage and Delayed Fracture.Bei- jing:Metallurgical Industry Press,1988:38 (褚武扬.氢损伤和滞后断裂.北京:冶金工业出版社,1988:38)
[14]Messmer R P,Briant C L.Hydrogen Degradation of Fer- rous Alloys.Park Ridge,N J:Noyes Publication,1985: 140
[15]Li X Y,Rong L J,Li Y Y.Acta Metall Sin,2005;41:1155 (李秀艳,戎利建,李依依.金属学报,2005;41:1155)
[16]Brooks J A,Thompson A W.Metall Trans,1993;24A: 1983
[1] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[2] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[3] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[4] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[5] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[6] Xiaoli ZHAO, Yongjian ZHANG, Chengwei SHAO, Weijun HUI, Han DONG. Hydrogen Embrittlement of Intercritically AnnealedCold-Rolled 0.1C-5Mn Steel[J]. 金属学报, 2018, 54(7): 1031-1041.
[7] Jun SUN, Suzhi LI, Xiangdong DING, Ju LI. Hydrogenated Vacancy: Basic Properties and Its Influence on Mechanical Behaviors of Metals[J]. 金属学报, 2018, 54(11): 1683-1692.
[8] LI Weijuan, ZHANG Hengyi, FU Hao, ZHANG Jianping, QI Xiangyu. INTERNAL FRICTION STUDY OF MECHANISM OF BAKE-HARDENING ON LOW CARBON STEEL[J]. 金属学报, 2015, 51(4): 385-392.
[9] Yongwei SUN,Jizhi CHEN,Jun LIU. STUDY ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF 1000 MPa GRADE 0Cr16Ni5Mo STEEL[J]. 金属学报, 2015, 51(11): 1315-1324.
[10] YAN Erhu, LI Xinzhong, TANG Ping, SU Yanqing, GUO Jingjie, FU Hengzhi. MICROSTRUCTURE AND HYDROGEN PERMEATION CHARACTERISTIC OF NEAR EUTECTIC Nb-Ti-Co HYDROGEN SEPARATION ALLOY[J]. 金属学报, 2014, 50(1): 71-78.
[11] LIU Yu, LI Yan, LI Qiang. EFFECT OF CATHODIC POLARIZATION ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF X80 PIPELINE STEEL IN SIMULATED DEEP SEA ENVIRONMENT[J]. 金属学报, 2013, 49(9): 1089-1097.
[12] WANG Yanfei GONG Jianming JIANG Wenchun JIANG Yong TANG Jianqun . NUMERICAL SIMULATION OF HYDROGEN INDUCED DELAYED FRACTURE OF AISI4135 HIGH STRENGTH STEEL USING COHESIVE ZONE MODELING[J]. 金属学报, 2011, 47(5): 594-600.
[13] WANG Hua SHI Wen HE Yanlin FU Renyu LI Lin. STUDY OF Mn AND P SOLUTE DISTRIBUTIONS AND THEIR EFFECT ON THE TENSILE BEHAVIOR IN ULTRA LOW CARBON BAKE HARDENING STEELS[J]. 金属学报, 2011, 47(3): 263-268.
[14] LI Yiyi FAN Cungan RONG Lijian YAN Desheng LI Xiuyan. HYDROGEN EMBRITTLEMENT RESISTANCE OF AUSTENITIC ALLOYS AND ALUMINIUM ALLOYS[J]. 金属学报, 2010, 46(11): 1335-1346.
[15] WU Jie CUI Hongzhi CHI Jing YAO Shuyu HAN Fusheng. INTERNAL FRICTION PEAK IN B2 Fe--Al ALLOYS DURING ORDERING PROCESS[J]. 金属学报, 2009, 45(4): 396-399.
No Suggested Reading articles found!