Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (5): 594-600    DOI: 10.3724/SP.J.1037.2010.00711
论文 Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF HYDROGEN INDUCED DELAYED FRACTURE OF AISI4135 HIGH STRENGTH STEEL USING COHESIVE ZONE MODELING
WANG Yanfei1), GONG Jianming1), JIANG Wenchun2),  JIANG Yong1), TANG Jianqun1)
1) College of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009
2) College of Mechanical and Electronic Engineering, China University of Petroleum, Dongying 257061
Cite this article: 

WANG Yanfei GONG Jianming JIANG Wenchun JIANG Yong TANG Jianqun . NUMERICAL SIMULATION OF HYDROGEN INDUCED DELAYED FRACTURE OF AISI4135 HIGH STRENGTH STEEL USING COHESIVE ZONE MODELING. Acta Metall Sin, 2011, 47(5): 594-600.

Download:  PDF(1336KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  High strength steels are susceptible to hydrogen induced delayed fracture (HIDF). A sequential coupling calculation on HIDF of high strength steel was developed based on cohesive zone modeling (CZM) using finite element program-ABAQUS. The calculation procedure contained three steps: elastic plastic stress analysis, stress assisted transient hydrogen diffusion and cohesive stress analysis using hydrogen dependent linear traction-separation law. Using this method, the prediction of fracture time and crack initiation location of pre-charged notched bar of AISI4135 high strength steel was obtained. The effects of stress concentration factor, initial hydrogen content, and tension load were also considered. The results show: (i) predictions of the time to fracture were in good quantitative agreement with the experimental results; the hydrogen dependent cohesive zone modeling can be used in prediction of failure in actual structures; (ii) crack initiation occurs when a critical hydrogen concentration at the location of stress peak is reached by accumulation, the critical hydrogen concentration is dependent on stress concentration factor and tension load, but independent of initial hydrogen content; (iii) as one of the three parameters mentioned above decreasing, the fracture initiation time and the critical hydrogen\linebreak concentration increase.
Key words:  cohesive zone modeling (CZM)      hydrogen induced delayed fracture (HIDF)      high strength steel      hydrogen embrittlement     
Received:  30 December 2010     
ZTFLH: 

TG457

 
Fund: 

Supported by Foundation for Six Talents Peak of Jiangsu Province (No.06-D-035)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00711     OR     https://www.ams.org.cn/EN/Y2011/V47/I5/594

[1] Chu W Y, Qiao L J, Chen Q Z, Gao K W. Fracture and Environment Fracture. Beijing: Science Press, 2000: 126

(褚武扬, 乔利杰, 陈奇志, 高克玮. 断裂与环境断裂. 北京: 科学出版社, 2000: 126)

[2] Serebrinsky S, Carter E A, Ortiz M. J Mech Phys Solids, 2004; 52: 2403

[3] Liang Y, Sofronis P. J Mech Phys Solids, 2003; 51: 1509

[4] Olden V, Thaulow C, Johnsen R, Φstby E, Berstad T. Eng Fract Mech, 2008; 75: 2333

[5] Olden V, Thaulow C, Johnsen R, Φstby E. Scr Mater, 2007; 57: 615

[6] Scheider I, Pfuff M, Dietzel W. Eng Fract Mech, 2008; 75: 4283

[7] Wang M Q, Akiyama E, Tsuzaki K. Corros Sci, 2006; 48: 2189

[8] Dugdale D S. J Mech Phys Solids, 1960; 8: 100

[9] Barrenblatt G I. Adv Appl Mech, 1962; 7: 55

[10] Hillerborg A, Modeer M, Petersson P. Cement Concrete Res, 1976; 6: 773

[11] Needleman A. J Appl Mech, 1987; 54: 525

[12] Nguyen O, Ortiz M. J Mech Phys Solids, 2002; 50: 1727

[13] Jiang D E, Carter E A. Acta Mater, 2004; 52:4801

[14] Hondros E D, Seah M P. Metall Trans, 1977; 8A: 1363

[15] Van der Ven A, Ceder G. Phys Rev, 2003; 67B: 060101

[16] Tvergaard V, Hutchinson J W. J Mech Phys Solids, 1992; 40: 1377

[17] Wang M Q, Akiyama E, Tsuzaki K. Mater Sci Eng, 2005; A398: 37

[18] GerberichWW, Livne T, Chen X F, Kaczorowski M. Metall Trans, 1988; 19A: 1319

[19] Williams D P, Nelson H G. Metall Trans, 1970; 1: 63
[1] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[2] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[3] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[4] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[5] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[6] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[7] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[8] LU Bin, CHEN Furong, ZHI Jianguo, GENG Ruming. Enhanced Welding Properties of High Strength Steel via Rare Earth Oxide Metallurgy Technology[J]. 金属学报, 2020, 56(9): 1206-1216.
[9] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[10] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[11] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[12] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[13] Xiaoli ZHAO, Yongjian ZHANG, Chengwei SHAO, Weijun HUI, Han DONG. Hydrogen Embrittlement of Intercritically AnnealedCold-Rolled 0.1C-5Mn Steel[J]. 金属学报, 2018, 54(7): 1031-1041.
[14] Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. 金属学报, 2018, 54(4): 501-511.
[15] Jun SUN, Suzhi LI, Xiangdong DING, Ju LI. Hydrogenated Vacancy: Basic Properties and Its Influence on Mechanical Behaviors of Metals[J]. 金属学报, 2018, 54(11): 1683-1692.
No Suggested Reading articles found!