Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (9): 1089-1097    DOI: 10.3724/SP.J.1037.2013.00271
Current Issue | Archive | Adv Search |
EFFECT OF CATHODIC POLARIZATION ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF X80 PIPELINE STEEL IN SIMULATED DEEP SEA ENVIRONMENT
LIU Yu1), LI Yan2), LI Qiang1)
1) College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580
2) College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao 266580
Cite this article: 

LIU Yu, LI Yan, LI Qiang. EFFECT OF CATHODIC POLARIZATION ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF X80 PIPELINE STEEL IN SIMULATED DEEP SEA ENVIRONMENT. Acta Metall Sin, 2013, 49(9): 1089-1097.

Download:  PDF(3498KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Pipeline steels utilized in deep seawater are usually protected cathodically. However, inappropriate operations of cathodic protection systems cause hydrogen embrittlement failures to these high strength steels in seawater which result from the application of excessive negative potentials, leading to massive generation of hydrogen at the protected pipelines' surface. With high strength steels increasingly widely used in the deep sea environment, the basic research to the cathodic protection and susceptibility to hydrogen embrittlement of high strength steels under such a circumstance is still unfortunately relatively lack and urgently needed to supplement. Electrochemical measurement, hydrogen permeation current detection, slow strain rate tensile test (SSRT) and fracture morphology analysis, therefore, were employed to investigate effect of cathodic polarization level on the susceptibility of API X80 pipeline steels to hydrogen embrittlement in simulated deep seawater in the present work. The results showed that the applied cathodic polarization potentials significantly affected hydrogen permeation and hydrogen--induced cracking behavior of X80 steels immersed in deep seawater. A linear relationship was found between the hydrogen permeation current densities and cathodic polarization potentials applied according to the findings of the potential dynamic polarization and hydrogen permeation current measurements. SSRT tests suggested that X80 pipeline steels immersed in simulated deep seawater didn't show susceptibility to hydrogen embrittlement at open circuit potential, and thus the optimum cathodic protection potential range was supposed to be above -900 mV (vs saturated calomel electrode). Under such a cathodic polarization potential, the hydrogen permeation current densities of X80 pipeline steel specimens were less than 0.1157 μA/cm2 andtheir mechanical properties didn't decrease remarkably. Once the cathodic polarization potentials lower than -900 mV, however, hydrogen permeation current densities and calculated hydrogen embrittlement coefficients ψ of X80 pipeline steels increased significantly, exhibiting higher susceptibility to hydrogen embrittlement in simulated deep seawater. Furthermore, macro-and micro-morphologies of fracture surface of X80 pipeline steels after SSRT test indicated that the fracture morphology transformed from a dimpled pattern with ductile fracture to a quasi—cleavage pattern when cathodically polarized to lower than -900 mV, i.e. showing obvious brittle failure characteristics.

Key words:  X80 pipeline steel      deep seawater      cathodic protection      hydrogen embrittlement susceptibility      slow strain rate tensile test      hydrogen permeation current     
Received:  17 May 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00271     OR     https://www.ams.org.cn/EN/Y2013/V49/I9/1089

[1] Billingham J, Sharp J V, Spurrier J.  Review of the Performance of High Strength Steel Used Offshore.London: Health and Safety Executive, 2003

[2] Cwiek J.  J Mater Process Technol, 2005; 164-165: 1007
[3] Barker J C.  Data Surveys of Hydrogen Assisted Cracking in High Strength Jack-Up Steels.London: Health and Safety Executive, 1998: 1
[4] Zheng W L.  Environment Sensitive Fracture of Steel. Beijing: Chemical Industry Press, 1988: 120
(郑文龙. 钢的环境敏感断裂. 北京: 化学工业出版社, 1988: 120)
[5] Hardie D, Charles E A, Lopez A H.  Corros Sci, 2006; 48: 4378
[6] Qiu K M, Wei B M, Fang Y H.  J Nanjing Inst Chem Technol, 1992; 14: 8
(邱开元, 魏宝明, 方耀华. 南京化工学院学报, 1992; 14: 8)
[7] Du X S, Su Y J, Li J X, Qiao L J, Chu W Y.  Corros Sci, 2012; 65: 278
[8] Kim D K, Muralidharan S, Ha T H, Bae J H, Ha Y H, Lee H G, Scantlebury J D.Electrochim Acta, 2006; 51: 5259
[9] Zucchi F, Grassi V, Monticelli C, Trabanelli G.  Corros Sci, 2006; 48: 522
[10] DNV-RP-F103.  Recommended Practice-Cathodic Protection of Submarine Pipelines by Galvanic Anodes.Norway: Det Norske Veritas, 2012
[11]NACE SP0169.  Standard Practice-Control of External Corrosion on Underground Submerged Metellic Piping Systems.Houston: NACE International, 2007
[12] ISO 15589-2.  Petroleum, Petrochemical and Natural Gas Industries-Cathodic Protection of Pipeline Transportation Systems-Part 2: Offshore Pipelines. Switzerland: ISO, 2012
[13] Zhang D L, Li Y.  Adv Mater Res, 2009; 79-82: 1051
[14] Devanathan M A V, Stachurski Z, Beck W.  J Electrochem Soc, 1963; 10: 886
[15] Batt C, Robinson M J.  Br Corros J, 2002; 37: 194
[16] Zhang L, Du M, Liu J F, Li Y, Liu P L.  Mater Sci Technol, 2011; 19: 96
(张林, 杜敏, 刘吉飞, 李妍, 刘培林. 材料科学与工艺, 2011; 19: 96)
[17] Luo D, Cui H W, Cai Q W, Wu H B.  Phys Exam Test, 2009; 27: 11
(罗登, 崔海伟, 蔡庆伍, 武会宾. 物理测试, 2009; 27: 11)
[18] Capelle J, Dmytrakh I, Pluvinage G.  Corros Sci, 2010; 52: 1554
[19] Thomason W H.  Mater Perform, 1988; 27: 94
[20] Huang Y L, Nakajima A, Nishikata A, Tsuru T.  ISIJ Int, 2003; 43: 548
[21] Frappart S, Feaugas X, Creus J, Thebault F, Delattre L, Marchebois H.  J Phys Chem Solids,2012; 71: 1467
[22] Addach H, Bercot P, Rezrazi M, Takadoum J.  Corros Sci, 2009; 51: 263
[23] Zhang L, Du M, Chen R L, Li Y, Zhang G Q, Liu P L.  Corros Sci Prot Technol, 2012; 24: 101
(张林, 杜敏, 陈如林, 李妍, 张国庆, 刘培林. 腐蚀科学与防护技术, 2012; 24: 101)
[24] Kim S J, Okido M, Moon K M.  Korean J Chem Eng, 2003; 20: 560
[25] Chen X, Wu M, He C, Xiao J.  Acta Metall Sin, 2010; 46: 951
(陈旭, 吴明, 何川, 肖军. 金属学报, 2010; 46: 951)
[26] Zhu W Y, Qiao L J, Chen Q Z, Gao K W.  Fracture and Environmental Fracture.Beijing: Science Press, 2000: 133
(褚武扬, 乔利杰, 陈奇志, 高克玮. 断裂与环境断裂. 北京: 科学出版社, 2000: 133)
[27] Dong J M, Pan X D, Fan P L, Qi J G, Xue J.  J Xi'an Jiaotong Univ, 1998; 32: 98
(董俊明, 潘希德, 樊培丽, 戚继皋, 薛锦. 西安交通大学学报, 1998; 32: 98)
[28] Moro I, Briottet L, Lemoine P, Andrieu E, Blanc C, Odemer G.  Mater Sci Eng, 2010; 527: 7252
[29] Yang Y, Zhang T, Shao Y W, Meng G Z, Wang F H.  Corros Sci, 2013; 73: 250
[30] Yang Y, Zhang T, Shao Y W, Meng G Z, Wang F H.  Corros Sci, 2010; 52: 2697
[1] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[2] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[3] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[4] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
[5] Maocheng YAN,Shuang YANG,Jin XU,Cheng SUN,Tangqing WU,Changkun YU,Wei KE. STRESS CORROSION CRACKING OF X80 PIPELINE STEEL AT COATING DEFECT IN ACIDIC SOIL[J]. 金属学报, 2016, 52(9): 1133-1141.
[6] Zhiyong LIU,Zongshu LI,Xiaolin ZHAN,Wenzhu HUANGFU,Cuiwei DU,Xiaogang LI. GROWTH BEHAVIOR AND MECHANISM OF STRESS CORROSION CRACKS OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2016, 52(8): 965-972.
[7] Timing ZHANG,Yong WANG,Weimin ZHAO,Xiuyan TANG,Tianhai DU,Min YANG. HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT[J]. 金属学报, 2015, 51(9): 1101-1110.
[8] YAN Maocheng, WANG Jianqiu, HAN En-hou, SUN Cheng, KE Wei. CHARACTERISTICS AND EVOLUTION OF THIN LAYER ELECTROLYTE ON PIPELINE STEEL UNDER CATHODIC PROTECTION SHIELDING DISBONDED COATING[J]. 金属学报, 2014, 50(9): 1137-1145.
[9] FAN Lin, LIU Zhiyong, DU Cuiwei, LI Xiaogang. RELATIONSHIP BETWEEN HIGH pH STRESS CORROSION CRACKING MECHANISMS AND APPLIED POTENTIALS OF X80 PIPELINE STEEL[J]. 金属学报, 2013, 49(6): 689-698.
[10] WANG Xinhua, LI Xiugang, LI Qiang, HUANG Fuxiang,LI Haibo, YANG Jian. CONTROL OF STRING SHAPED NON-METALLIC INCLUSIONS OF CaO-Al2O3 SYSTEM IN X80 PIPELINE STEEL PLATES[J]. 金属学报, 2013, 49(5): 553-561.
[11] LIU Zhiyong WANG Changpeng DU Cuiwei LI Xiaogang. EFFECT OF APPLIED POTENTIALS ON STRESS CORROSION CRACKING OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2011, 47(11): 1434-1439.
[12] DENG Wei GAO Xiuhua QIN Xiaomei GAO Xin ZHAO Dewen DU Linxiu. EFFECT OF COOLING RATE ON MICROSTRUCTURE OF DEFORMED AND UNDEFORMED X80 PIPELINE STEELS[J]. 金属学报, 2010, 46(8): 959-966.
[13] CHEN Xu WU Ming HE Chuan XIAO Jun. EFFECT OF APPLIED POTENTIAL ON SCC OF X80 PIPELINE STEEL AND ITS WELD JOINT IN KU’ERLE SOIL SIMULATED SOLUTION[J]. 金属学报, 2010, 46(8): 951-958.
[14] DENG Wei GAO Xiuhua QIN Xiaomei ZHAO Dewen DU Linxiu WANG Guodong. IMPACT FRACTURE BEHAVIOR OF X80 PIPELINE STEEL[J]. 金属学报, 2010, 46(5): 533-540.
[15] ZHOU Jianlong LI Xiaogang DU Cuiwei LI Yunling LI Tao PAN Ying. ANODIC ELECTROCHEMICAL BEHAVIOR OF X80 PIPELINE STEEL IN NaHCO3 SOLUTION[J]. 金属学报, 2010, 46(2): 251-256.
No Suggested Reading articles found!