Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (4): 385-392    DOI: 10.11900/0412.1961.2014.00434
Current Issue | Archive | Adv Search |
INTERNAL FRICTION STUDY OF MECHANISM OF BAKE-HARDENING ON LOW CARBON STEEL
LI Weijuan(), ZHANG Hengyi, FU Hao, ZHANG Jianping, QI Xiangyu
School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051
Cite this article: 

LI Weijuan, ZHANG Hengyi, FU Hao, ZHANG Jianping, QI Xiangyu. INTERNAL FRICTION STUDY OF MECHANISM OF BAKE-HARDENING ON LOW CARBON STEEL. Acta Metall Sin, 2015, 51(4): 385-392.

Download:  HTML  PDF(3639KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High strength steel plates are being applied more extensively in automobile industry under higher demands of weight reduction, safety and environmental protection. As one of the high strength steel plates for automobile body panel, bake-hardening steel plate is featured by low yield strength and good formability during stamping, and is particularly featured by improved yield strength through following paint baking process, exhibiting higher strength and anti-dent ability in service. Bake-hardening (BH) is closely related to interactions between interstitial atoms and crystal defects during baking process. In this work, BH mechanisms in low carbon steel are studied under different annealing temperatures by measuring and analyzing stress-strain curves and BH values in baked conditions, and internal friction curves in both deformed and baked conditions. The results show that when the annealing temperature increases gradually from 750 to 880 ℃, the stress-strain curves exhibit discontinuous yielding behavior with stronger serration of yield platform and continuous elongation of yield point. With the increase of the annealing temperature from 750 to 780 ℃, BH value decreases, difference between Snoek peak values in deformed and baked conditions increases, SKK peak value decreases, and Kê peak value does not change significantly, which indicates that solid solution strengthening dominates the BH. When the annealing temperature increases from 780 to 880 ℃, BH value continuously increases, difference between Snoek peak values in deformed and baked conditions gradually decreases, relaxation strength of SKK peak gradually increases, and Kê peak is stable, which indicates that Cottrell atmosphere strengthening is playing an increasing role in the BH. The BH is due to a combined mechanism contributed by solid solution strengthening Cottrell atmosphere strengthening and precipitation strengthening.

Key words:  bake-hardening      internal friction      solid solution strengthening      Cottrell atmosphere strengthening      precipitation strengthening     
ZTFLH:  TG142.1  
Fund: Supported by National Natural Science Foundation of China (No.51274121)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00434     OR     https://www.ams.org.cn/EN/Y2015/V51/I4/385

Fig.1  Microstructures of low carbon steel at annealing temperatures of 750 ℃ (a), 780 ℃ (b), 810 ℃ (c), 850 ℃ (d) and 880 ℃ (e)
Fig.2  Stress-strain curves (a) and variation of yield point elongation (b) of low carbon steel after bake-hardening (BH) followed by 2% deformation
Fig.3  BH values of low carbon steel at different annealing temperatures
Fig.4  Internal friction curves of low carbon steel of pre-deformation state and baking state annealed at 750 ℃ (a), 780 ℃ (b), 810 ℃ (c), 850 ℃ (d) and 880 ℃ (e) (Q—internal friction metric)
Fig.5  The height of Snoek peak of pre-deformation state (hs) (a) and variation of Snoek height between pre-deformation state and baking state ht (b)
Fig.6  Kê peaks of pre-deformation state (a) and pre-deformation and baking state at annealing temperatures of 750 ℃ (b), 780 ℃ (c), 810 ℃ (d), 850 ℃ (e) and 880 ℃ (f)
[1] De A K, Vandeputte S, De Coomana B C. Scr Mater, 1999; 41: 831
[2] De A K, Blauwe K D, Vandeputteb S, De Cooman B C. J Alloys Compd, 2000; 310: 405
[3] Zhao J Z, De A K, De Cooman B C. ISIJ Int, 2000; 40: 725
[4] Speer G J, Matlock K D. JOM, 2002; 54(7): 19
[5] Jiang H T, Kang Y L, Yu H. Auto Technol Mater, 2005; (3): 1
(江海涛, 康永林, 于 浩. 汽车工艺与材料, 2005; (3): 1)
[6] Zhao J Z, De A K, De Cooman B C. Metall Mater Trans, 2001; 32A: 417
[7] Baird J D. Int Mater Rev, 1971; 16(1): 1
[8] Vasilyev A A, Leeb H C, Kuzmin L N. Mater Sci Eng, 2008; A485: 282
[9] Zhao J Z, De A K, De Cooman B C. Mater Lett, 2000; 44: 374
[10] De A K, Vandeputte S, De Cooman B C. Scr Mater, 2001; 44: 695
[11] Cottrell A H, Bilby B A. Phys Soc London, 1949; 62(1)A: 49
[12] Soenen B, De A K, Vandeputte S, De Cooman B C. Acta Mater, 2004; 52: 3483
[13] Wert C, Marx J. Acta Metall, 1953; 1: 113
[14] Wert C A. Phys Rev, 1950; 79: 601
[15] Wert C A. Physics, 1949; 20: 943
[16] Bagramov R, Mari D, Benoit W. Philos Mag, 2001; 81A: 2797
[17] Ji J W, Yu N. Prog Phys, 2006; 26: 296
(戢景文, 于 宁. 物理学进展, 2006; 26: 296)
[18] Fang Q F, Wang X P, Wu X B, Lu H. Physics, 2011; 40: 786
(方前锋, 王先平, 吴学邦, 鲁 卉. 物理, 2011; 40: 786)
[19] Ji J W, Liu F D, Wang D J, Che Y Y, Hua Q Z, Liu J M, Huang Z R. Acta Metall Sin, 1999; 35: 913
(戢景文, 刘芬娣, 王登京, 车韵怡, 华桥柱, 刘建民, 黄镇如. 金属学报, 1999; 35: 913)
[20] Yu N, Liu Y G, Zhang Z B, Zhan H, Zhang J, Ji J W. J ShangHai JiaoTong Univ, 2010; 44: 624
(于 宁, 刘永刚, 张志波, 詹 华, 张 建, 戢景文. 上海交通大学学报, 2010; 44: 624)
[21] Che Y Y, Sun Y J, Ji J W. J Northeastern Univ (Nat Sci), 1997; 18: 676
(车韵怡, 孙玉杰, 戢景文. 东北大学学报(自然科学版), 1997; 18: 676)
[22] Che Y Y, Liu F D, Zeng G Y, Xu Y C, Ji J W. Acta Metall Sin, 1998; 34: 831
(车韵怡, 刘芬娣, 曾桂仪, 许余昌, 戢景文. 金属学报, 1998; 34: 831)
[23] Yu N, Ji J W. Acta Metall Sin, 2002; 38: 230
(于 宁, 戢景文. 金属学报, 2002; 38: 230)
[24] Ge T S. Solid Internal Friction Theoretical Basis. Beijing: Science Press, 2000: 62
(葛庭燧. 固体内耗理论基础. 北京: 科学出版社, 2000: 62)
[25] De A K, Vandeputte S, De Cooman B C. J Mater Eng Perform, 2001; 10: 567
[1] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[2] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[3] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[4] XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping. Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing[J]. 金属学报, 2021, 57(7): 903-912.
[5] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[6] Yinhui ZHANG, Qiang FENG. Effects of W on Creep Behaviors of Novel Nb-Bearing Austenitic Heat-Resistant Cast Steels at 1000 ℃[J]. 金属学报, 2017, 53(9): 1025-1037.
[7] Xiaolin LI,Zhaodong WANG,Xiangtao DENG,Yujia ZHANG,Chengshuai LEI,Guodong WANG. EFFECT OF FINAL TEMPERATURE AFTER ULTRA-FAST COOLING ON MICROSTRUCTURAL EVOLUTION AND PRECIPITATION BEHAVIOR OF Nb-V-Ti BEARING LOW ALLOY STEEL[J]. 金属学报, 2015, 51(7): 784-790.
[8] WANG Bo, WANG Xiaojiao, SONG Hui, YAN Jujie, QIU Tao, LIU Wenqing, LI Hui. STRENGTHENING EFFECTS OF MICROSTRUCTURE EVOLUTION DURING EARLY AGEING PROCESS IN Al-Mg-Si ALLOY[J]. 金属学报, 2014, 50(6): 685-690.
[9] WANG Bin, LIU Zhenyu, Feng Jie, ZHOU Xiaoguang, WANG Guodong. PRECIPITATION BEHAVIOR AND PRECIPITATION STRENGTHENING OF NANOSCALE CEMENTITE IN CARBON STEELS DURING ULTRA FAST COOLING[J]. 金属学报, 2014, 50(6): 652-658.
[10] WANG Xiaona, HAN Lizhan, GU Jianfeng. PRECIPITATION KINETICS AND YIELD STRENGTH MODEL FOR NZ30K-Mg ALLOY[J]. 金属学报, 2014, 50(3): 355-360.
[11] DU Gang YANG Wen YAN Desheng RONG Lijian. HARDENING BEHAVIOR OF THE AS–CAST Al–Mg–Sc–Zr ALLOY[J]. 金属学报, 2011, 47(3): 311-316.
[12] WANG Hua SHI Wen HE Yanlin FU Renyu LI Lin. STUDY OF Mn AND P SOLUTE DISTRIBUTIONS AND THEIR EFFECT ON THE TENSILE BEHAVIOR IN ULTRA LOW CARBON BAKE HARDENING STEELS[J]. 金属学报, 2011, 47(3): 263-268.
[13] LENG Chongyan ZHOU Rong ZHANG Xu LU Dehong LIU Hongxi . WEAR PERFORMANCE OF Ti6Al4V ALLOY MODIFIED BY Ag+Ta DUAL--ION IMPLANTATION[J]. 金属学报, 2009, 45(6): 764-768.
[14] WU Jie CUI Hongzhi CHI Jing YAO Shuyu HAN Fusheng. INTERNAL FRICTION PEAK IN B2 Fe--Al ALLOYS DURING ORDERING PROCESS[J]. 金属学报, 2009, 45(4): 396-399.
[15] Jian ZHANG. EFFECTS OF GRAIN-BOUNDARY PHASES ON HYDROGEN EMBRITTLEMENT OF FE-NI-CR AUSTENITIC ALLOY BY INTERNAL FRICTION[J]. 金属学报, 2008, 44(9): 1095-1098 .
No Suggested Reading articles found!