Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (9): 1069-1075     DOI:
Research Articles Current Issue | Archive | Adv Search |
Dynamic Phase Transformation and Spheroidization of Cementite of Hypereutectoid Steel Containing Aluminum during Deformation
;;;
北京科技大学
Cite this article: 

;. Dynamic Phase Transformation and Spheroidization of Cementite of Hypereutectoid Steel Containing Aluminum during Deformation. Acta Metall Sin, 2008, 44(9): 1069-1075 .

Download:  PDF(2882KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of Al on microstructure evolution of a hypereutectoid steel(0.97%C) during deformation of undercooled austenite was investigated by hot uniaxial compression tests. The results indicated that the dynamic transformation during deformation of undercooled austenite included dynamic phase transformation, spheroidization of cementite and dynamic recrystallization of ferrite. The proeutectoid cementites were formed during equilibrium transformation, while the proeutectoid cementites were restrained by deformation of undercooled austenite and the interlamellar spacing of pearlite was reduced. With the addition of Al of about 1 wt%, the proeutectoid cementites were restrained during equilibrium transformation and dynamic phase transformation, the stability of undercooled austenite during deformation was increased, retarding the formation of pearlite and the interlamellar spacing of pearlite was decreased. During the spheroidization of cementite and dynamic recrystallization of ferrite, the coarsening of cementite was restrained and the size of cementite and ferrite was refined by the addition of Al of about 1 wt%.
Key words:  hypereutectoid steel      undercooled austenite      aluminum      cementite      ferrite      
Received:  14 December 2007     
ZTFLH:  TG142.1  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I9/1069

[1]Sherby O D.ISIJ Int,1999;39:637
[2]Sherby O D,Walser B,Young C M,Cady E M.Scr Metall, 1975;9:569
[3]Walser B,Sherby O D.Metall Trans,1979;10A:1461
[4]Wadsworth J,Lin J H,Sherby O D.Met Technol,1981;8: 190
[5]Sherby O D,Oyama T,Kum D W,Walser B,Wadsworth J.J Met,1985;37:50
[6]Carsi M,Vicente A F,Sherby O D,Penalba F,Ruano O A.Mater Sci Forum,2007;539 543:4826
[7]Oyama T,Sherby O D,Wadsworth J,Walser B.Scr Met- all,1984;18:799
[8]Taleff E M,Bramfitt B L,Syn C K,Lesuer D R, Wadsworth J,Sherby O D.Mater Charact,2001;46:11
[9]Furuhara T,Mizoguchi T,Maki T.ISIJ Int,2005;45:392
[10]Fu W,Furuhara T,Maki T.ISIJ Int,2004;44:171
[11]Tagashira S,Sakai K,Furuhara T,Maki T.ISIJ Int,2000; 40:1149
[12]Frommeyer G,Jimenez J A.Metall Mater Trans,2005; 36A:295
[13]Lesuer D R,Syn C K,Gokdberg A,Wadsworth J,Sherby O D.J Met,1993;43:40
[14]Syn C K,Lesuer D R,Goldberg A,Tsai H C,Sherby O D.Mater Sci Forum,2007;539-543:4844
[15]Lcsuer D R,Syn C K,Whittenberger J D,Sherby O D. Metall Mater Trans,1999;30A:1559
[16]Tsuzaki K,Sato E,Furimoto S,Furuhara T,Maki T.Scr Mater,1999;40:675
[17]Fukuyo H,Tsai H C,Oyama T,Sherby O D.ISIJ Int, 1991;31:76
[18]Hernandez D,Jimenez J A,Frommeyer G.Mater Trans, 1996;37:1758
[19]Yang W Y,Qi J J,Sun Z Q,Yang P.Acta Metall Sin, 2004;40:135 (杨王玥,齐俊杰,孙祖庆,杨平.金属学报,2004;40:135)
[20]Sun Z Q,Yang W Y,Qi J J.Mater Sci Forum,2005; 475-479(1):49
[21]Li L F,Yang W Y,Sun Z Q.Metall Mater Trans,2006; 37A:609
[22]Chen G A,Yang W Y,Sun Z Q.Acta Metall Sin,2007; 43:27 (陈国安,杨王玥,孙租庆.金属学报,2007;43:27)
[23]Huang Q S,Li L F,Yang W Y,Sun Z Q.Acta Metall Sin, 2007;43:724 (黄青松,李龙飞,杨王玥,孙祖庆.金属学报,2007;43:724)
[24]Chen W,Li L F,Yang W Y,Sun Z Q.Chin J Mater Res, 2008;22:374 (陈伟,李龙飞,杨王玥,孙祖庆.材料研究学报,2008;22:374)
[25]Leslie W C,Rauch G C.Metall Trans,1978;9A:343
[26]Zuidema B K,Subramanyam D K,Leslie W C.Metall Trans,1987;18A:1629
[27]Elwazri A W,Wanjara P,Yue S.Mater Sci Technol,2006; 22:542
[28]Wu C J,Chen G L,Qiang W J.Metal Materials Science. Beijing:Metallurgical Industry Press,2000:17 (吴承建,陈国良,强文江.金属材料学.北京:冶金工业出版社,2000:17)
[29]Laxar B F H,Frame J W,Blickwede D J.Trans ASM, 1961;53:683
[30]Huang Q S,Li L F,Yang W Y,Sun Z Q.Trans Mater Heat Treat,2008;29(3):45 (黄青松,李龙飞,杨王玥,孙祖庆.材料热处理学报,2008;29(3):45)
[31]Bengochea R,Lopez B,Gutierrez I.Metall Mater Trans, 1998;29A:417
[32]Robbins J L,Shepard O C,Sherby O D.J Iron Steel Inst, 1964;202:804
[33]Harrigan M J,Sherby O D.Mater Sci Eng,1971;7:177
[34]Paqueton H,Pineau A.J Iron Steel Inst,1971;209:991
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[3] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[4] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[5] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[6] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[7] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[8] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[9] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[10] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[11] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[12] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[13] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[14] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[15] PENG Jun, JIN Xinyan, ZHONG Yong, WANG Li. Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. 金属学报, 2022, 58(12): 1600-1610.
No Suggested Reading articles found!