Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (2): 249-256     DOI:
论文 Current Issue | Archive | Adv Search |
Numerical simulation of effects of the minor active-element oxygen on the Marangoni convection and the weld shape
中国科学院金属研究所特殊环境材料研究部材料制备与工艺模拟课题组
Cite this article: 

. Numerical simulation of effects of the minor active-element oxygen on the Marangoni convection and the weld shape. Acta Metall Sin, 2008, 44(2): 249-256 .

Download:  PDF(642KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A mathematical model was developed to calculate the 3D transient temperature, velocity distribution and the evolution of weld pool shapes in a stationary gas tungsten arc (GTA) weld pool on 304 stainless steels with different oxygen content. The results indicate that when the oxygen content increases, the convection pattern in the weld pool undergoes a dominant outward convection, outward on pool center together with inward on pool periphery, and a dominant inward convection. Accordingly, the weld pool evolves from a shallow wide shape, a spoon-like shape to a deep narrow one. The minor active-element oxygen in the weld pool influences on the temperature coefficient of the surface tension, directly, which leads to the significant change of the Marangoni convection pattern and hence the weld shape. When the oxygen content is below 80ppm, an outward Marangoni convection pattern on the weld pool surface occurs, and forms a shallow and wide weld shape. As the oxygen content exceeding 120ppm, the Marangoni convection changes to inward direction and the weld shape varies from a shallow and wide shape to a deep and narrow one. When the oxygen content is between 80ppm and 120ppm, the weld pool exhibits a spoon-like shape. And as time going, the outward convection region in the weld pool becomes smaller gradually, and the inward convection region becomes larger. The simulation results agree well with the experimental data under Ar-O2 mixed shielding stationary GTA welding on SUS304 plates.

Key words:  Minor active-element      Oxygen      Marangoni convection      Weld shape      Numerical simulation     
Received:  03 July 2007     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I2/249

[1]Modenesi P J,Apolinario E R,Pereira I M.J Mater Pro- cess Technol,2000;99:260
[2]Fan D,Zhang R H,Gu Y F,Ushio M.Trans JWRI,2001; 30:35
[3]Gurevich S M,Zamkov V N.Avtomaticheskaya Svarka, 1966;12:13
[4]Liu F Y,Yang C L,Lin S B,Wu L,Zhang Q T.Acta Metall Sin,2003;39:661 (刘凤尧,杨春利,林三宝,吴林,张清涛.金属学报,2003;39:661)
[5]Lu S P,Fujii H,Sugiyama H,Tanaka M,Nogi K.ISIJ Int, 2003;43:1590
[6]Lu S P,Fujii H,Nogi K.J Mater Sci,2005;40:2481
[7]Tanaka M,Shimizu T,Terasaki H,Ushio M,Koshi-ishi F,Yang C L.Sci Technol Weld Join,2000;5:397
[8]Heiple C R,Roper J R.Weld J,1982;34:97s
[9]Heiple C R,Burgardt P.Weld J,1985;64:159s
[10]Zacharia T,David S A,Vitek J M,DebRoy T.Weld J, 1989;68:499s
[11]Zacharia T,David S A,Vitek J M,DebRoy T.Weld J, 1989;68:510s
[12]Wang Y,Shi Q,Tsai H L.Metall Mater Trans,2001;32: 145
[13]Leconte S,Paillard P,Saindrenan J.Sci Technol Weld Join,2006;11:43
[14]Yang C L,Masao U,Manabu T.Weld Join,2000;(4):16 (杨春利,牛尾诚夫,田中学.焊接,2000;(4):16)
[15]Yang C L,Masao U,Manabu T.Weld Join,2000;(5):15 (杨春利,牛尾诚夫,田中学.焊接,2000;(5):15
[16]Yang C L,Masao U,Manabu T.Weld Join,2000;(6):11 (杨春利,牛尾诚夫,田中学.焊接,2000;(6):11)
[17]Fan D,Gu Y F,Shi Y,Zhang R H.Weld Join,2002;(2): 16 (樊丁,顾玉芬,石玗,张瑞华.焊接,2002;(2):16)
[18]Zhao Y Z,Lei Y P,Shi Y W.Acta Metall Sin,2004;40: 1085 (赵玉珍,雷永平,史耀武.金属学报,2004;40:1085)
[19]Zhang R H,Fan D.Sci Technol Weld Join,2007;12:15
[20]Sahoo P,DebRoy T,McNallan M J.Metall Trans,1988; 19B:483
[21]Bennon W D,Incropera F P.Int J Heat Mass Truns,1987; 30:2161
[22]Tsao R C,Wu C S.Weld J,1988;67:70s
[23]Wu C S,Zhao P C,Zhang Y M.Weld J,2004;83:330s
[24]Zacharia T,Eraslan A H,Aidun D K,David S A.Metall Trans,1989;20B:645
[25]Rykalin N N.Weld World,1969;9:112
[26]Zacharia T,David S A,Vitek J M.Metall Trans,1991; 22B:233
[27]Wu C S.Eng Comput,1992;9:529
[28]Choo R T C,Szekely J.Weld J,1991;70:223s9
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] CAO Shuting, ZHANG Shaohua, ZHANG Jian. Combustion Behavior of GH4061 Alloy in High Pressure and Oxygen-Enriched Atmosphere[J]. 金属学报, 2023, 59(4): 547-555.
[4] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[5] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[8] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[9] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[10] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[11] GAO Xiang, ZHANG Guikai, XIANG Xin, LUO Lizhu, WANG Xiaolin. Effects of Alloying Elements on the Adsorption of Oxygen on V(110) Surfaces: A First-Principles Study[J]. 金属学报, 2020, 56(6): 919-928.
[12] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[13] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[14] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[15] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
No Suggested Reading articles found!