|
|
Numerical simulation of effects of the minor active-element oxygen on the Marangoni convection and the weld shape |
中国科学院金属研究所特殊环境材料研究部材料制备与工艺模拟课题组 |
|
Cite this article:
. Numerical simulation of effects of the minor active-element oxygen on the Marangoni convection and the weld shape. Acta Metall Sin, 2008, 44(2): 249-256 .
|
Abstract A mathematical model was developed to calculate the 3D transient temperature, velocity distribution and the evolution of weld pool shapes in a stationary gas tungsten arc (GTA) weld pool on 304 stainless steels with different oxygen content. The results indicate that when the oxygen content increases, the convection pattern in the weld pool undergoes a dominant outward convection, outward on pool center together with inward on pool periphery, and a dominant inward convection. Accordingly, the weld pool evolves from a shallow wide shape, a spoon-like shape to a deep narrow one. The minor active-element oxygen in the weld pool influences on the temperature coefficient of the surface tension, directly, which leads to the significant change of the Marangoni convection pattern and hence the weld shape. When the oxygen content is below 80ppm, an outward Marangoni convection pattern on the weld pool surface occurs, and forms a shallow and wide weld shape. As the oxygen content exceeding 120ppm, the Marangoni convection changes to inward direction and the weld shape varies from a shallow and wide shape to a deep and narrow one. When the oxygen content is between 80ppm and 120ppm, the weld pool exhibits a spoon-like shape. And as time going, the outward convection region in the weld pool becomes smaller gradually, and the inward convection region becomes larger. The simulation results agree well with the experimental data under Ar-O2 mixed shielding stationary GTA welding on SUS304 plates.
|
Received: 03 July 2007
|
[1]Modenesi P J,Apolinario E R,Pereira I M.J Mater Pro- cess Technol,2000;99:260 [2]Fan D,Zhang R H,Gu Y F,Ushio M.Trans JWRI,2001; 30:35 [3]Gurevich S M,Zamkov V N.Avtomaticheskaya Svarka, 1966;12:13 [4]Liu F Y,Yang C L,Lin S B,Wu L,Zhang Q T.Acta Metall Sin,2003;39:661 (刘凤尧,杨春利,林三宝,吴林,张清涛.金属学报,2003;39:661) [5]Lu S P,Fujii H,Sugiyama H,Tanaka M,Nogi K.ISIJ Int, 2003;43:1590 [6]Lu S P,Fujii H,Nogi K.J Mater Sci,2005;40:2481 [7]Tanaka M,Shimizu T,Terasaki H,Ushio M,Koshi-ishi F,Yang C L.Sci Technol Weld Join,2000;5:397 [8]Heiple C R,Roper J R.Weld J,1982;34:97s [9]Heiple C R,Burgardt P.Weld J,1985;64:159s [10]Zacharia T,David S A,Vitek J M,DebRoy T.Weld J, 1989;68:499s [11]Zacharia T,David S A,Vitek J M,DebRoy T.Weld J, 1989;68:510s [12]Wang Y,Shi Q,Tsai H L.Metall Mater Trans,2001;32: 145 [13]Leconte S,Paillard P,Saindrenan J.Sci Technol Weld Join,2006;11:43 [14]Yang C L,Masao U,Manabu T.Weld Join,2000;(4):16 (杨春利,牛尾诚夫,田中学.焊接,2000;(4):16) [15]Yang C L,Masao U,Manabu T.Weld Join,2000;(5):15 (杨春利,牛尾诚夫,田中学.焊接,2000;(5):15 [16]Yang C L,Masao U,Manabu T.Weld Join,2000;(6):11 (杨春利,牛尾诚夫,田中学.焊接,2000;(6):11) [17]Fan D,Gu Y F,Shi Y,Zhang R H.Weld Join,2002;(2): 16 (樊丁,顾玉芬,石玗,张瑞华.焊接,2002;(2):16) [18]Zhao Y Z,Lei Y P,Shi Y W.Acta Metall Sin,2004;40: 1085 (赵玉珍,雷永平,史耀武.金属学报,2004;40:1085) [19]Zhang R H,Fan D.Sci Technol Weld Join,2007;12:15 [20]Sahoo P,DebRoy T,McNallan M J.Metall Trans,1988; 19B:483 [21]Bennon W D,Incropera F P.Int J Heat Mass Truns,1987; 30:2161 [22]Tsao R C,Wu C S.Weld J,1988;67:70s [23]Wu C S,Zhao P C,Zhang Y M.Weld J,2004;83:330s [24]Zacharia T,Eraslan A H,Aidun D K,David S A.Metall Trans,1989;20B:645 [25]Rykalin N N.Weld World,1969;9:112 [26]Zacharia T,David S A,Vitek J M.Metall Trans,1991; 22B:233 [27]Wu C S.Eng Comput,1992;9:529 [28]Choo R T C,Szekely J.Weld J,1991;70:223s9 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|