Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (2): 172-176     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effect of electromagnetic vibration on the structure in solidified Al-4.5%Cu alloy under a strong magnetic field
YU Jian-Bo
上海大学
Cite this article: 

YU Jian-Bo. Effect of electromagnetic vibration on the structure in solidified Al-4.5%Cu alloy under a strong magnetic field. Acta Metall Sin, 2008, 44(2): 172-176 .

Download:  PDF(596KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effects of electromagnetic vibration with a strong magnetic field on the solidified structure of hypoeutectic Al-4.5%Cu alloy were experimentally studied. It was found that the morphology of was transferred from coarse dendrite to refined spheroid. At a constant magnetic flux density, the size of grains was decreased significantly with the increasing of current density. While at a constant current density, the refinement was increased firstly with the increasing of magnetic flux density and then diminished appreciably. X-ray diffraction indicated that the refining grains were oriented with <111> towards the magnetic field direction. The orientation degree was increased with the decreasing of grain size. The relation between orientation and grain size was analyzed from crystal orientation and migration theory.
Key words:  High magnetic field      Electromagnetic vibration      alternative current      Orientation      Al alloy      refine      
Received:  07 June 2007     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I2/172

[1]Chen W P,Maeda H,Kakimoto K,Zhang P X,Watanabe K,Motokawa M,Kumakura H,Itoh K.J Cryst Growth, 1999;204:69
[2]Sassa K,Morikawa H,Asai S.J Jpn Inst Met,1997;61: 1283 (佐佐健介,森川拓,浅井滋生.日本金属学会志,1997;61:1283)
[3]Sata H,Kimura T,Ogawa S,Yamato M,Ito E.Polymer, 1996;37:1879
[4]Kimura T,Kawai T,Sakamoto Y.Polymer,2000;41:809
[5]Suzuki T S,Sakka Y,Kitazawa K.Adv Eng Mater,2001; 3:44
[6]Suzuki T S,Sakka Y.Chem Lett,2002;31:1204
[7]Sugiyama T,Tahashi M,Sassa K,Asai S.ISIJ Int,2003; 43(6):855
[8]Vires C.Mater Sci Eng,1993;A173:169
[9]Radjai A,Miwa K,Nishio T.Metall Mater Trans,1998; 29A:1477
[10]Radjai A,Miwa K,Nishio T.Metall Mater Trans,2002; 33A:3025
[11]Takagi T,Iwai K,Asai S.ISIJ Int,2003;43(6):842
[12]Iwai K,Sugiura K.Mater Sci Forum,2005;475:2695
[13]Usui M,Iwai K,Asai S.ISIJ Int,2006;46:859
[14]Matsushima H,Nohira T,Mogi L.Surf Coat Technol, 2004;179:245
[15]Li X,Ren Z M,Sun Y H,Wang J,Yu J B,Ren W L.Acta Metall Sin,2006;42:147 (李喜,任忠鸣,孙延辉,王俊,余建波,任维丽.金属学报,2006;42:147)
[16]Yu J B,Ren Z M,Deng K,Ren W L,Li X,Wang J.Chin Nonferrous Met,2007;17:92 (余建波,任忠鸣,邓康,任维丽,李喜,王俊.中国有色金属学报,2007;17:92)
[17]Zhu Y M.J Instrum Mater,1982;13(6):25 (朱耀明.仪表材料,1982;13(6):25)
[1] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[2] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[3] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[4] GAO Dong, ZHOU Yu, YU Ze, SANG Baoguang. Selection of Twin Variants in Dynamic Plastic Deformation of Pure Ti at Liquid Nitrogen Temperature[J]. 金属学报, 2022, 58(9): 1141-1149.
[5] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[6] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[7] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[8] SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam[J]. 金属学报, 2022, 58(5): 610-622.
[9] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[10] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[11] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[12] LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. 金属学报, 2022, 58(12): 1611-1622.
[13] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[14] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[15] ZHAO Lei, WANG Hui, YANG Lixia, CHEN Xuebin, LANG Runqiu, HE Linfeng, CHEN Dongfeng, WANG Haizhou. First Exploration of Hot Isostatic Pressing High-Throughput Synthesis on Fe-Co-Ni Combinatorial Alloy[J]. 金属学报, 2021, 57(12): 1627-1636.
No Suggested Reading articles found!