Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (1): 8-12     DOI:
Research Articles Current Issue | Archive | Adv Search |
GRAIN-SIZE DEPENDENCE OF COCIVITY OF NANOCOMPOSITE PERMANENT MAGNETS IN THREE PHASE-DISTRIBUTION MODELS
;;;;
钢铁研究总院
Cite this article: 

. GRAIN-SIZE DEPENDENCE OF COCIVITY OF NANOCOMPOSITE PERMANENT MAGNETS IN THREE PHASE-DISTRIBUTION MODELS. Acta Metall Sin, 2008, 44(1): 8-12 .

Download:  PDF(185KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Phase distribution and grain size are the key factors controlling the coercivity of nanocomposite permanent magnets. Assuming three simple physical models, we have calculated the dependence of coercivity on the grain size, phase distribution and volume fraction of two phases. The calculation results show that the different phase distributions lead to the variation of grain-interface fractions, and then make the intergrain exchange-coupling fluctuate randomly. Phase distribution influences the values of coeicivity of nanocomposites, but does not change the variation tendency of coercivity on hard grain size. High coercivity can be probably obtained by designing an ideal phase distribution and controlling the grain sizes.
Key words:  phase distribution      grain interface      grain size      
Received:  17 May 2007     
ZTFLH:  TG132.2  
  TM273  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I1/8

[1]Manaf A,Buckley R A,Davies H A,Leonowicz M.J Magn Magn Mater,1991;101:360
[2]Betancourt J I,Davies R H A.J Magn Magn Mater,2002; 246:6
[3]Billona O V,Urreta S E,Fabietti L M,Bertorello H R.J Magn Magn Mater,1998;187:371
[4]Feng W C,Gao R W,Yan S S,Li W,Zhu M G.J Appl Phys,2005;98:044305
[5]Fukunaga H,Kuma J,Kanai Y.IEEE Trans Magn,1999; 35:3235
[6]Sun X K,Zhang J,Chu Y L,Liu W,Cui B Z,Zhang Z D.Appl Phys Lett,1999;74:1740
[7]Bauer J,Seager M,Zero A,Kronmüller H.J Appl Phys, 1996;80:1667
[8]Xiao Q F,Zhao T,Zhang Z D.J Magn Magn Mater,2001; 223:215
[9]Liu W,Zhang Z D,Liu J P,Chen L J,He L H,Liu Y, Sun X K,Sellmyer D J.Adv Mater,2002;14:1832
[10]Liu W,Zhang Z D,Liu J P,Dai Z R,Wang Z L,Sun X K,Sellmyer D J.J Phys,2003;36D:63
[11]Skomski R,Coey J M D.IEEE Trans Magn,1993;29: 2860
[12]Arcas J,Hernando A,Barandiaran J M.Phys Rev,1998; 58B:5193
[13]Chena Z M,Wu Y Q,Kramerb M J,Smith B R,Ma B M,Huang M W.J Magn Magn Mater,2004;268:105
[14]Melsheimer A,Seeger M,Kronmüller H.J Magn Magn Mater,1999;202:458
[15]Kronmiiller H,Fischer R,Seeger M,Zern A.J Phys,1996; 29D:2274
[16]Kneller E F,Hawig R.IEEE Trans Magn,1991;27:3588
[17]Feng W C,Gao R W,Han G B,Zhu M G,Li W.Acta Phys Sin,2004;53:3171 (冯维存,高汝伟,韩广兵,朱明刚,李卫.物理学报,2004;53:3171)
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[3] ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform[J]. 金属学报, 2020, 56(9): 1227-1238.
[4] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[5] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[6] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
[7] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[8] Yi MEI, Quanlong SUN, Lihua YU, Chuanrong WANG, Huaqiang XIAO. Grain Size Prediction of Aluminum Alloy Dies Castings Based on GA-ELM[J]. 金属学报, 2017, 53(9): 1125-1132.
[9] Ming ZHANG, Guoquan LIU, Benfu HU. Effect of Microstructure Instability on Hot Plasticity During Thermomechanical Processing in PM Nickel-Based Superalloy[J]. 金属学报, 2017, 53(11): 1469-1477.
[10] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
[11] Yongfeng SONG, Xiongbing LI, Haiping WU, Jiayong SI, Xiaoqin HAN. EFFECTS OF IN718 GRAIN SIZE ON ULTRASONICBACKSCATTING SIGNALS AND ITS NONDE-STRUCTIVE EVALUATION METHOD[J]. 金属学报, 2016, 52(3): 378-384.
[12] Jin LIU,Guohui ZHU. MODEL OF THE EFFECT OF GRAIN SIZE ON PLASTI-CITY IN ULTRA-FINE GRAIN SIZE STEELS[J]. 金属学报, 2015, 51(7): 777-783.
[13] Qing ZHAO,Shuang XIA,Bangxin ZHOU,Qin BAI,Cheng SU,Baoshun WANG,Zhigang CAI. EFFECT OF DEFORMATION AND THERMOMECHA- NICAL PROCESSING ON GRAIN BOUNDARY CHARACTER DISTRIBUTION OF ALLOY 825 TUBES[J]. 金属学报, 2015, 51(12): 1465-1471.
[14] LI Xiongbing, SONG Yongfeng, NI Peijun, LIU Feng. ULTRASONIC EVALUATION METHOD FOR GRAIN SIZE BASED ON MULTI-SCALE ATTENUATION[J]. 金属学报, 2015, 51(1): 121-128.
[15] HOU Danhui, LIANG Songmao, CHEN Rongshi, DONG Chuang. SOLIDIFICATION BEHAVIOR AND GRAIN SIZE OF SAND CASTING Mg-6Al-xZn ALLOYS[J]. 金属学报, 2014, 50(5): 601-609.
No Suggested Reading articles found!